Найти длину перпендикуляра, опущенного из начала координат на прямую 3x — 6y + 5 = 0, а также координаты основания этого перпендикуляра.
Приведем данное уравнение к нормальному виду:
После умножения на нормирующий множитель уравнение примет вид
Из сравнения с заключаем, что .
Для определения координат основания этого перпендикуляра из рисунка
(эти формулы верны при любом расположении прямой относительно координатных осей).
как видно из уравнения и искомые координаты основания перпендикуляра равны
- Через начало координат провести перпендикуляр к прямой 6x+5y-19=0.
- Задание 1.
- Задание 2.
- Задание 3.
- Задание 4.
- Задание 5.
- Задание 6.
- Задание 7.
- Задание 8.
- Задание 9.
- Задание 10.
- Задание 11
- Задание 12
- Задание 13
- Задание 14
- Задание 15
- Задание 16
- Задание 17
- Задание 18
- Задание 19
- Задание 20
- Задание 21
- Задание 22
- Задание 23
- Задание 24
- Задание 25
- 1.3.2. Аналитическая геометрия в пространстве
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Через начало координат провести перпендикуляр к прямой 6x+5y-19=0.
Видео:Составляем уравнение прямой по точкамСкачать
Задание 1.
Через начало координат провести перпендикуляр к прямой 6x+5y-19=0.
Составить уравнение прямой, проходящей через точку А (-3,4) и параллельной прямой x-2y+5=0.
Проверить, что точки A(2;1;3), B(-1;2;5), C(3;0;1) не лежат на одной прямой и составить уравнение плоскости, проходящей через них.
Написать уравнение плоскости, проходящей через точку Р(7; -5; 1) и отсекающей на осях координат равные отрезки.
Вычислить внутренний угол при B у треугольника A(-1;-2;4), B(-4;-2;0), C(3;-2;1).
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Задание 2.
Написать уравнение перпендикуляра, опущенного из точки A(-5;2) на прямую 4x-y+3=0
Составить уравнение прямой, проходящей через точку А (-3,4) и параллельной прямой .
Составить уравнение плоскости, проходящей через точку A(1;-1;2) и параллельной плоскости x-3y+2z+1=0.
Написать уравнение плоскости проходящей через точку Р(-1; 5; -7) и отсекающей на осях координат равные отрезки
Даны координаты вершин пирамиды А(4; 4; 10), В(4; 10; 2), C(2; 8; 4), D(9; 6; 9). Найти уравнение высоты, опущенной из вершины D на грань АВС
Видео:Уравнение прямой на плоскостиСкачать
Задание 3.
Написать уравнение перпендикуляра, опущенного из точки A(-5;2) на прямую 2x+3y+8=0
Составить уравнение прямой, проходящей через точку А (-3,4) и параллельной прямой x=2.
Составить уравнение плоскости, проходящей через точку (1,3,1) и перпендикулярной прямой x+y-z+2=0, 2x+3y+z-1=0.
Найти расстояние от точки (3;1;-1) до плоскости x-y-5z+2=0.
Даны координаты вершин пирамиды: A(3; 5; 4), B(8; 7; 4), C(5; 10; 4), D(4; 7; 8).
Найти уравнения высоты, опущенной из вершины D на грань АВС
Видео:Видеоурок "Нормальное уравнение прямой"Скачать
Задание 4.
Написать уравнение перпендикуляра, опущенного из точки A(5;2) на прямую 7x-y+4=0.
Составить уравнение прямой, проходящей через точку А (-3,4) и параллельной прямой y=-1.
Проверить, что точки A(1;-1;3), B(2;3;4), C(-1;1;2) не лежат на одной прямой и составить уравнение плоскости, проходящей через них.
Найти расстояние от точки (3;1;-1) до плоскости x-2y+2z-2=0.
Найти уравнение высоты, проведенной из вершины A на грань BCD: A(3; 5; 4), B(8; 7; 4), C(5; 10; 4), D(4; 7; 8).
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Задание 5.
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 3x-y+3=0.
Составить уравнение прямой, проходящей через точку А (-3,4) и параллельной прямой x=3+t, y=4-7t
Составить уравнение плоскости, проходящей через точку A(1;-1;2) и параллельной плоскости x=5.
Найти расстояние от точки (3;1;-1) до плоскости x-2y+2z+7=0.
Написать уравнение перпендикуляра, опущенного из точки Р(3; -2; 4) на плоскость 5x + 3y — 7z + 1 = 0
Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Задание 6.
Написать уравнение перпендикуляра, опущенного из точки A(0;2) на прямую 2x-y+9=0
Через точку M(2;-1) провести прямую, отсекающую на осях координат равные отрезки.
Найти угол между плоскостями x+4y-z+1=0 и x+y-z-3=0.
Найти расстояние от точки (3;1;-1) до плоскости x-2y+2z=0.
Написать уравнение перпендикуляра, опущенного из точки M(2; — 4; -3) на плоскость 3x — 7y + 5z + 3 = 0
Видео:§12 Полярное уравнение прямойСкачать
Задание 7.
Написать уравнение перпендикуляра, опущенного из точки A(-5;0) на прямую 5x+2y+3=0
Найти угол между прямыми 2x+y=1 и y=x-2
Проверить, что точки A(3;0;0), B(0;-1;0), C(0;0;4) не лежат на одной прямой и составить уравнение плоскости, проходящей через них.
Вычислить расстояние от плоскости 2x — y + 2z — 90 = 0 до начала координат.
Даны точки A(4; -5; 2) и B(-2; 3; 2). Провести через середину отрезка AB плоскость, перпендикулярную ему.
Видео:Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать
Задание 8.
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 2x-3y+3=0
Найти угловой коэффициент прямой и отрезок, отсекаемый ею на оси ординат, если прямая проходит через точки А(2; -8) и В(-1; 7).
Найти угол между плоскостями x+2y-z=1 и x-y=3.
Найти расстояние от точки (3;1;-1) до плоскости x=1.
Найти угол между ребрами AC и BD: A(4; 2; 5), B(0; 7; 2), C(0; 2; 7), D(1; 5; 0). Найти угол АВС.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Задание 9.
Написать уравнение перпендикуляра, опущенного из точки A(2;2) на прямую x-y+3=0
Составить уравнение прямой, проходящей через точку А(-3,4) и параллельной прямой y=-1
Найти угол между плоскостями x+2y-2z=0 и z=5.
Найти расстояние от точки (3;1;-1) до плоскости y=5.
Вершины пирамиды A(4; 4; 10), B(4; 10; 2), C(2; 8; 4), D(9; 6; 9).M – середина BC. Найти угол AMD.
Видео:Уравнения прямой на плоскости | Векторная алгебраСкачать
Задание 10.
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 4x-y+3=0
Написать уравнение прямой, удаленной на 5 от прямой 12x+5y=39.
Составить уравнение плоскости, проходящей через 3 заданные точки (если эти точки определяют плоскость) A(2;1;1), B(2;0;-1), C(2;4;3)
Вычислить расстояние от точки Р(4; 3; -2) до плоскости 3x — y + 5z + 1 =0.
Вершин пирамиды: A(4; 6; 5), B(6; 9; 4), C(2; 10; 10), D(7; 5; 9). M – середина BC. Найти угол MАD.
Видео:Прямая на плоскости. Проекция точки на прямуюСкачать
Задание 11
Написать уравнение перпендикуляра, опущенного из точки A(-5;-2) на прямую x-y+3=0
Определить угол между прямыми 5x-y+7=0, 3x+2y=0.
Можно ли провести плоскость через точки (0; 0; 2), (3; 0; 5), (1; 1;0), (4; 1; 2)?
Найти расстояние между плоскостями 6x-3y+2z+5=0 и 6x-3y+2z-9=0.
Дан тетраэдр A(-1; 2; 5), B(0; -4; 5), C(-3; 2; 1), D(1; 2; 4). Написать уравнение плоскости, проходящей через вершину D и перпендикулярной стороне AC
Видео:Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать
Задание 12
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 4x-3y+3=0
Для треугольника ABC, A(6; 2), B(8; 8), C(14; 5) написать уравнение медианы CM.
Проверить, что точки A(1;1;2), B(2;3;3), C(-1;-3;0) не лежат на одной прямой и составить уравнение плоскости, проходящей через них.
Найти расстояние между плоскостями 2x+2y-z+3=0 и 2x+2y-z+18=0.
Найти угол между плоскостью 4x+4y-7z+1=0 и прямой (x-1)/3=(y+2)/2=z/(-6)
Видео:Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать
Задание 13
Написать уравнение перпендикуляра, опущенного из точки A(3;2) на прямую x-2y+3=0
Найти расстояние от точки (1;-2) до прямой 2x-3y+5=0.
Найти угол между плоскостями x+2y-z=1 и 3x-5y-7z=0.
Найти расстояние между плоскостями 3x+4z+1=0 и 6x+8y-1=0.
Найти угол между плоскостью 4x+4y-7z+1=0 и прямой (x-2)/4=(y-1)/4=(z+3)/(-7)
Видео:Решение систем уравнений методом подстановкиСкачать
Задание 14
Написать уравнение перпендикуляра, опущенного из точки A(3;2) на прямую x-3y+3=0
Через точку пересечения прямых 2x-y=2 и x+y=1 провести прямую, параллельную прямой y=3x-1.
Найти угол между плоскостями x-3y+2z+1=0 и 6z-9y+3x+5=0.
Найти расстояние от точки (-2;-4;3) до плоскости 2x-y+2z+3=0.
Даны координаты вершин пирамиды A(4; 6; 5), B(6; 9; 4), C(2; 10; 10),D(7; 5; 9). Найти угол между прямыми АВ и CD
Видео:Часть 8 Уравнение прямой проходящей через точку и перпендикулярную к заданной прямойСкачать
Задание 15
Найти расстояние от точки (1;-2) до прямой 4x-3y-15=0.
Написать уравнение перпендикуляра, опущенного из точки A(4;2) на прямую 2x-y+3=0
Вычислить расстояние между плоскостями 2x +10y -11z — 15 = 0 и 2x + 10y- 11z + 45 = 0.
Написать уравнение перпендикуляра, опущенного из начала координат на плоскость 16x-12y+15z-4=0.
Даны координаты вершин пирамиды: A(3; 5; 4), B(8; 6; 4), C(5; 10; 4),D(4; 7; 8). Найти угол между АВ и CD.
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Задание 16
Даны вершины треугольника А(4; 6), В(-4; 0) и С(-1; -4). Составить уравнения его сторон.
Написать уравнение перпендикуляра, опущенного из точки A(1;0) на прямую 3x-y+3=0
Лежат ли точки (3; 1; 0), (0; 1; 2), (-1; 0; 5), (4; 1; 5) на одной плоскости?
Найти расстояние от точки (1;2;-3) до плоскости 5x-3y+z+4=0.
Даны координаты вершин пирамиды: A(4; 2; 5), B(0; 7; 2), C(0; 2; 7),D(1; 5; 0). Найти угол между AC и BD.
Видео:Нормальное уравнение прямой на плоскостиСкачать
Задание 17
Даны вершины треугольника А(4; 6), В(-4; 0) и С(-1; -4). Составить уравнение медианы, проведенной из вершины С.
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 4x-3y+8=0
Проверить, что три плоскости 2x — 2y + z -3 = 0, 3x — 6z + 1 = 0 и 4x +5y + 2z = 0 попарно перпендикулярны.
Найти расстояние от точки (3;-6;7) до плоскости 4x-3z-1=0.
Даны координаты вершин пирамиды A(4; 4; 10), B(4; 10; 2), C(2; 8; 4),D(9; 6; 9) Найти угол между плоскостью ABD и прямой АС
Видео:Векторный метод в стереометрии. Задача 14 профильный ЕГЭСкачать
Задание 18
Даны вершины треугольника А(4; 6), В(-4; 0) и С(-1; -4). Составить уравнение биссектрисы угла В.
Написать уравнение перпендикуляра, опущенного из точки A(2;2) на прямую 3x-y+13=0
Найти угол между плоскостями — x + 2y — z + 1 = 0 и y + 3z -1 = 0
Найти расстояние от точки (9;2;-2) до плоскости 12y-5z+5=0.
Проверить, лежит ли прямая (x + 2)/3=(y — 5)/4=z на плоскости 3x -2y — z+15 = 0
Видео:Уравнение параллельной прямойСкачать
Задание 19
Найти расстояние от точки (1;-2) до прямой 4x=3y.
Написать уравнение перпендикуляра, опущенного из точки A(1;2) на прямую 2x+y+3=0
Написать уравнение плоскости, параллельной плоскости 2x + 6y — 3z — 14 =0 и отстоящей от нее на расстоянии пяти единиц
Вычислить расстояние от плоскости y-z+2=0 до начала координат.
Проверить, лежит ли прямая (x — 1)/2 = (y + 3)/-1 = (x + 2)/5 на плоскости 4x + 3y — z + 3 = 0
Задание 20
Проверить, что точки А(-2; -2), В(-3; 1), С(7; 7) и D(3; 1) служат вершинами трапеции, и составить уравнение средней линии этой трапеции.
Написать уравнение перпендикуляра, опущенного из точки A(3;2) на прямую 7x-y+31=0
Составить уравнения плоскостей, параллельных плоскости 6x-3y+2z+5=0 и отстоящих от нее на расстояние 3.
Вычислить расстояние от плоскости x-2y+2z-6=0 до начала координат.
Даны координаты вершин пирамиды A(4; 6; 5), B(6; 9; 4), C(2; 10; 10),D(7; 5; 9). Найти угол между плоскостью ABD и прямой АС
Задание 21
Найти угол между прямыми x-2=3y/2-5 и x-1=-2y+4
Написать уравнение перпендикуляра, опущенного из точки A(3;2) на прямую 2x-3y+3=0
Убедиться, что плоскости 2x — y + z — 1 = 0 и —4x + 2y — 2z — 1 = 0 параллельны и найти расстояние между ними
Написать уравнение перпендикуляра, опущенного из начала координат на плоскость 2x+3y-6z+4=0.
Составить уравнение прямой, проходящей через точку А(1; -5; 3) и образующей с осями координат углы, соответственно равные 60, 45 и120 градусов.
Задание 22
Найти угол между прямыми 2x-1=y+11 и 2x+6=y-9.
Написать уравнение перпендикуляра, опущенного из точки A(0;2) на прямую 2x-4y+33=0
Найти уравнение плоскости, проходящей через ось OX и точку (1;1;1)
Найти расстояние между плоскостями 2x-3y+6z-14=0 и 4x-6y+12z+21=0.
Даны координаты вершин пирамиды A(4; 4; 10), B(4; 10; 2), C(2; 8; 4),D(9; 6; 9) Найти угол между прямыми AB и CD.
Задание 23
Составить уравнение прямой, параллельной прямым 4х — 6у — 3 = 0 и 2х -3у — 7 = 0, проходящей посредине между ними.
Написать уравнение перпендикуляра, опущенного из точки A(2;2) на прямую x+y+11=0
Написать уравнения плоскости, проходящей через точку (2;1;-5) и ось OZ.
Найти расстояние между плоскостями 2x-y+2z+9=0 и 4x-2y+4z-21=0.
Найти угол между прямыми x-3=-y-2=z/ , x+2=y-3=(z+5)/ .
Задание 24
Найти угол между прямыми x=7 и y=2x+8
Написать уравнение перпендикуляра, опущенного из точки A(3;2) на прямую x+5y+10=0
Написать уравнение плоскости, проходящей через ось z и через точку (-3;1; -2)
Найти расстояние между плоскостями x-2y-2z-12=0 и x-2y-2z-6=0.
Найти угол между плоскостью 4x+4y-7z+1=0 и прямой x+y+z+1=0, 2x+y+3z+2=0.
Задание 25
При каком значении параметра a прямые 3ax-8y+13=0 и (a+1)x-2ay-21=0 параллельны?
Написать уравнение перпендикуляра, опущенного из точки A(7,2) на прямую x+3y+5=0.
Вычислить угол между плоскостями 6x-18y-9x-28=0 и 4x-12y-6z-7=0.
Составить уравнение плоскостей параллельных плоскости 3x+4z+1=0 и отстоящих от начала координат на расстояние 3.
Даны координаты вершин пирамиды A(4,4,10), B(4,10,2), C(2,8,4), D(9,6,9). Найти уравнение прямых AB и CD и угол между ними.
Дата добавления: 2015-08-28 ; просмотров: 100 | Нарушение авторских прав
1.3.2. Аналитическая геометрия в пространстве
1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь
r = xi + yj + zk — радиус-вектор текущей точки плоскости
M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.
При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g — p = 0 (нормальное уравнение плоскости).
2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора
N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель
где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.
3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:
А = 0; плоскость параллельна оси ОХ;
В = 0; плоскость параллельна оси О^
C = 0; плоскость параллельна оси ОZ;
D = 0; плоскость проходит через начало координат;
А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);
А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);
В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);
А = D = 0; плоскость проходит через ось ОХ;
В = D = 0; плоскость проходит через ось OY;
C = D = 0; плоскость проходит через ось OZ;
А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);
А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);
B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).
Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на — D, можно уравнение
плоскости привести к виду^ здесь
. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.
4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле
Условие параллельности плоскостей:
Условие перпендикулярности плоскостей:
5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНаходится по формуле
Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.
6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)
и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х — х0) + B(y — у0) + C(z — z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.
7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями
некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.
8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r — T1, r2 — rl, r3 — rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:
или в координатной форме:
Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z — 1 = 0, 2x + 3у — z + 2 = 0 и через точку М(3, 2, 1).
Решение. Воспользуемся уравнением пучка плоскостей
Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:
Получаем искомое уравнение в виде:
или, умножая на 13 и приводя подобные члены, в виде:
Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z — 4 = 0 и X — у — 2z + 7 = 0 и параллельной оси оу.
Решение. Воспользуемся уравнением пучка x + 3у + 5z — 4 + + l(x — у — 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 — 2l)z + (71 — 4) = 0.
Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 — l = 0, I = 3. Подставив значение I в уравнение пучка, получаем
Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z — 3 = 0.
Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:
Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:
Исключая коэффициенты А, В и C из системы уравнений
получаем искомое уравнение в виде:
Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.
Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением
Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору
Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:
1. Прямая может быть задана уравнениями 2-х плоскостей
пересекающихся по этой прямой.
2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.
3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:
4. Так называемые канонические уравнения
определяют прямую, проходящую через точку M(x1, у1, z1)
и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:
где a, b и g — углы, образованные прямой с осями координат.
5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:
6. Угол между двумя прямыми, заданными их каноническими
деляется по формуле
перпендикулярности двух прямых:
условие параллельности двух прямых:
7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):
Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.
условие параллельности прямой и плоскости: условие перпендикулярности прямой и плоскости:
Определяется по формуле
9. Для определения точки пересечения прямой
С плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:
а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;
б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;
в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.
Пример 1.26. Привести к каноническому виду уравнения прямой 2х — у + 3z — 1 = 0 и 5х + 4у — z — 7 = 0.
Решение. Исключив вначале у, а затем z, получим:
Если разрешим каждое из уравнений относительно х, то будем иметь:
отсюда
Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i — j + 3k и N2= 5i + 4 j — k, то за него можно принять векторное произведение векторов N1 и N2.
Таким образом, l = -11; m = 17; n = 13.
За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:
Решая эту систему, находим у1 = 2; z1 = 1.
Итак, искомая прямая определяется уравнениями:
Мы получили прежний ответ.
Пример 1.27. Построить прямую
Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:
Пример 1.28. Из начала координат опустить перпендикуляр на прямую
Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).
Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:
Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).
Для определения t имеем уравнение:
Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):
Пример 1.29. В уравнениях прямойОпределить
параметр n так, чтобы эта прямая пересекалась с прямой
, и найти точку их пересечения.
Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:
Следовательно, уравнения пересекающихся прямых таковы: искомой:
Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоИмеем,
отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).
Пример 1.30. Прямая задана каноническими уравнениями
Составить общие уравнения этой прямой.
Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:
Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х — 3у — 13 = 0 параллельна оси Oz, а другая х + 3z — 11 = 0 параллельна оси Oy.
Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой
заключенный между плоскостями хoz и xoy.
Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:
отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).
отсюда X = 11, у = 14, или В(11; 14; 0).
Определяем координаты точки М, делящей отрезок АВ пополам:
Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).
Пример 1.32. Составить уравнение плоскости, проходящей через прямую
Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:
которое делим на а ф 0, и пусть b /а = I:
Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:
В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:
Подставляя I = 1 в уравнение пучка плоскостей, получим: Тогда искомое уравнение плоскости будет:
Пример 1.33. Дана прямая Найти ее проекцию на плоскость
Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.
Составим уравнение пучка плоскостей, проходящих через данную прямую:
Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:
Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:
Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:
Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:
Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.
Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам
N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.
В качестве S берем векторное произведение векторов N1 и N2 , т. е.
Тогда искомое уравнение в каноническом виде будет: