Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Видео:Известно, что парабола проходит через точку В(-1; -1/40, и её вершина находится в начале координатСкачать

Известно, что парабола проходит через точку В(-1; -1/40,   и её вершина находится в начале координат

Глава 20. Парабола

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F , расстояние от фокуса до директрисы — буквой р. Число р называется параметром параболы.

Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением

Найти уравнение параболы с вершиной в начале координат и проходящей через точку(1)

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Уравнение (1) называется каноническим уравнением параболы. В этой же системе координат директриса данной параболы имеет уравнение

Найти уравнение параболы с вершиной в начале координат и проходящей через точку.

Фокальный радиус произвольной точки М( x; y ) параболы (то есть длина отрезка F(M ) может быть вычислен по формуле

Найти уравнение параболы с вершиной в начале координат и проходящей через точку.

Парабола имеет одну ось симметрии, называемую осью параболы, с которой она пересекается в единственной точке. Точка пересечения параболы с осью называется ее вершиной. При указанном выше выборе координатной системы ось параолы совмещена с осью абсцисс, вершина находится в начале координат, вся парабола лежит в правой полуплоскости.

Если координатная система выбрана так, что ось абсцисс совмещена с осью параболы, начало координат — с вершиной, но парабола лежит в левой полуплоскости (рис.), то ее уравнение будет иметь вид

Найти уравнение параболы с вершиной в начале координат и проходящей через точку(2)

В случае, когда начало координат находится в вершине, а с осью совмещена ось ординат, парабола будет иметь уравнение

Найти уравнение параболы с вершиной в начале координат и проходящей через точку(3)

если она лежит в верхней полуплоскости (рис.), и

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найти уравнение параболы с вершиной в начале координат и проходящей через точку(4)

если в нижней полуплоскости (рис.)

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Каждое из уравнений параболы (2), (3), (4), как и уравнение (1), называется каноническим.

Видео:КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Известно, что парабола проходит через точку B(-1; -1/4)

Видео:Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Известно, что парабола проходит через точку B(-1; -1/4)

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Известно, что парабола проходит через точку B(-1; -1/4), и её вершина находится в начале координат,
Найдите уравнение этой параболы и вычислите, в каких точках она пересекает прямую y = -16

Поскольку вершина параболы лежит в начале координат, то уравнение параболы имеет вид

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Найдем значение коэффициента a.

Для этого в уравнение подставим координаты точки B(-1; -1/4)

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Уравнение параболы имеет вид

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Так как прямая пересекает параболу, следовательно, парабола проходит через точки с ординатой 16.

Подставив в уравнение значение ординаты, найдем абсциссы точек.

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Ответ: Найти уравнение параболы с вершиной в начале координат и проходящей через точку(-8; -16), (8; -16)

Смотрите видеоурок с решением задачи.

Видео:Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.Скачать

Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.

Найти уравнение параболы с вершиной в начале координат и проходящей через точку

Парабола симметрична относительно оси Ox, проходит через точку A(4, -1), а вершина ее лежит в начале координат. Составить ее уравнение.

Так как парабола проходит через точку A(4, -1) с положительной абсциссой, а ее осью служит ось Ox, то уравнение параболы следует искать в виде y 2 = 2px. Подставляя в это уравнение координаты точки A, будем иметь

🎥 Видео

Как определить уравнение параболы по графику?Скачать

Как определить уравнение параболы по графику?

213. Фокус и директриса параболы.Скачать

213. Фокус и директриса параболы.

Как найти вершину параболы?Скачать

Как найти вершину параболы?

Как найти уравнение параболы Найти коэффициент а через точки ОГЭ математика задание 5Скачать

Как найти уравнение параболы Найти коэффициент а через точки  ОГЭ математика задание 5

Квадратичная функция. Вершина параболы и нули функции. 8 класс.Скачать

Квадратичная функция. Вершина параболы и нули функции. 8 класс.

Как написать уравнение параболы с помощью графикаСкачать

Как написать уравнение параболы с помощью графика

8 класс. Найти координаты точек пересечения параболы с осями координатСкачать

8 класс. Найти координаты точек пересечения  параболы с осями координат

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известноСкачать

№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известно

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Вершина параболы и ось симметрии. ПримерСкачать

Вершина параболы и ось симметрии. Пример

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

§25 Исследование канонического уравнения параболыСкачать

§25 Исследование канонического уравнения параболы
Поделиться или сохранить к себе: