- Понятие о кривых второго порядка
- Эллипс, заданный каноническим уравнением
- Решить задачи на эллипс самостоятельно, а затем посмотреть решение
- Продолжаем решать задачи на эллипс вместе
- Математический портал
- Nav view search
- Navigation
- Search
- Эллипс, гипербола, парабола. Директориальное свойство эллипса и гиперболы.
- Дан эллипс 9x² + 25y² = 225 найти а) его полуоси б) фокусы в) эксцентриситет г) уравнения директрис?
- Дан эллипс x ^ 2 / 7 + y ^ 2 / 16 = 1?
- Записать уравнение окружности, проходящей через фокусы эллипса 24х2 + 25у2 = 600 и имеющей центр в точке А(0 ; 6)?
- Составьте уравнение эллипса, фокусы которого лежат на оси ординат, E = 0, 6 и 2b = 10 ?
- Составить уравнение эллипса, у которого эксцентриситет равен 0, 8, а фокальные радиусы одной из его точек равны 2 и 3?
- Составить каноническое уравнение эллипса, если известно, что расстояние между фокусом равна 6, а большая полуось — 5 единицам?
- Построить кривую, заданную уравнением?
- Составить каноническое уравнение эллипса, если его большая полуось равна 12, а эксцентриситет равен 0, 8?
- Найти полуоси координаты фокусов и эксцентриситет и уравнение директрис эллипса 16х ^ 2 + 25y ^ 2 — 400 = 0?
- Составить каноническое уравнение параболы с вершиной в начале координат, симметричной ОУ , фокус которой в точке F(0 ; — 3) Составить уравнение эллипса , проходящего через точку А(4 ; 6) , фокусы кото?
- Эксцентриситет эллипса 5х ^ 2 + 9y ^ 2 = 45 равен?
- Составить уравнение эллипса фокусы которого имеют координаты
- Чертеж фигуры эллипс
- Эксцентриситет фигуры эллипс
- Директрисы фигуры эллипс
- УСЛОВИЕ:
- Решения пользователей
- РЕШЕНИЕ ОТ sova
- Лучшие эксперты в этом разделе
Видео:§28 Эксцентриситет эллипсаСкачать
Понятие о кривых второго порядка
Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.
Общий вид уравнения кривой второго порядка следующий:
,
где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.
При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Эллипс, заданный каноническим уравнением
Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.
Фокусы обозначены как и
на рисунке ниже.
Каноническое уравнение эллипса имеет вид:
,
где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.
Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка
перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.
Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.
Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .
Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.
Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:
Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.
Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.
Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:
.
Точки и
, обозначенные зелёным на большей оси, где
,
называются фокусами.
называется эксцентриситетом эллипса.
Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.
Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.
Решение. Делаем несложные умозаключения:
— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,
— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.
Подставляем и вычисляем:
Результат — каноническое уравнение эллипса:
.
Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .
Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:
.
Вычисляем квадрат длины меньшей полуоси:
Составляем каноническое уравнение эллипса:
Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .
Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:
.
Получаем фокусы эллипса:
Видео:165. Найти фокусы и эксцентриситет эллипса.Скачать
Решить задачи на эллипс самостоятельно, а затем посмотреть решение
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) расстояние между фокусами 30, а большая ось 34
2) малая ось 24, а один из фокусов находится в точке (-5; 0)
3) эксцентриситет , а один из фокусов находится в точке (6; 0)
Видео:Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
Продолжаем решать задачи на эллипс вместе
Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и
— расстояния до этой точки от фокусов
, то формулы для расстояний — следующие:
.
Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями
,
называются директрисами эллипса (на чертеже — красные линии по краям).
Из двух вышеприведённых уравнений следует, что для любой точки эллипса
,
где и
— расстояния этой точки до директрис
и
.
Пример 7. Дан эллипс . Составить уравнение его директрис.
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:
.
Получаем уравнение директрис эллипса:
Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые
.
Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:
.
Теперь можем получить и квадрат длины меньшей полуоси:
Уравнение эллипса готово:
Пример 9. Проверить, находится ли точка на эллипсе
. Если находится, найти расстояние от этой точки до фокусов эллипса.
Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:
.
Получили единицу, следовательно, точка находится на эллипсе.
Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:
Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.
,
так как из исходного уравнения эллипса .
Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.
Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать
Математический портал
Видео:Видеоурок "Гипербола"Скачать
Nav view search
Navigation
Search
- Вы здесь:
- Home
Видео:Кривые второго порядкаСкачать
Эллипс, гипербола, парабола. Директориальное свойство эллипса и гиперболы.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Эллипс.
Эллипс с каноническим уравнением $frac+frac=1, ageq b>0,$ и меет форму изображенную на рисунке.
Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами эллипса векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей эллипсу. В частном случае $a=b$ фокусы $F_1$ и $F_2$ совпадают с центром, а каноническое уравнение имеет вид $frac+frac=1,$ или $x^2+y^2=a^2,$ т.е. описывает окружность радиуса $a$ с центром в начале координат.
Теорема. ( Директориальное свойство эллипса)
Приведем уравнение эллипса к каноническому виду:
а) Находим полуоси $a=5,$ $b=3.$
б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$
$c=sqrt=sqrt=4Rightarrow F_1(-4, 0),qquad F_2(4, 0).$
г) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$
Приведем уравнение эллипса к каноническому виду, для этого выделим полные квадраты:
Это уравнение эллипса. Центр имеет координаты $C=(x_0, y_0)=(-3, -1);$ полуоси $a=3,$ $b=sqrt 5.$
Ответ: $C=(x_0, y_0)=(-3, -1);$ $a=3,$ $b=sqrt 5;$ $ e=frac.$ $D_1:2x+3=0, $ $D_2: 2x-15=0.$
Далее, чтобы найти $a,$ подставим найденное значение $b$ и координаты точки $M_1(2, sqrt 3)$ в каноническое уравнение эллипса $frac+frac=1:$
Таким образом, уравнение эллипса $frac+frac=1.$
Далее найдем координаты фокусов:
$c=sqrt=sqrt=2sqrt 3Rightarrow F_1(-2sqrt 3, 0),,,, F_2(2sqrt 3, 0).$
Отсюда находим $overline =(2+2sqrt 3, sqrt 3),$ $overline=(2-2sqrt 3, sqrt 3).$
Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$
Таким образом, расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_1: sqrt 3 x+8=0$
расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_2: sqrt 3 x-8=0$
Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами гиперболы, векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей гиперболе.
Теорема. (Директориальное свойство гиперболы).
Приведем уравнение гиперболы к каноническому виду:
а) Находим полуоси $a=3,$ $b=4.$
б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$
$c=sqrt=sqrt=5Rightarrow F_1(-5, 0),qquad F_2(5, 0).$
г) Асимптоты гиперболы находим по формулам $y=pmfracx:$
д) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$
Приведем заданное уравнение к каноническому виду, для этого выделим полные квадраты:
Это уравнение гиперболы. Центр имеет координаты $C=(x_0, y_0)=(2,-3);$ полуоси $a=3,$ $b=4.$
$$y+3=frac(x-2)Rightarrow 3y+9=4x-8Rightarrow 4x-3y-17=0.$$
$$y+3=-frac(x-2)Rightarrow 3y+9=-4x+8Rightarrow 4x+3y+1=0.$$
Проверим, что заданная точка лежит на гиперболе:
Следовательно, точка $M(-5, 9/4)$ лежит на гиперболе $frac-frac=1.$
Для того, чтобы найти фокальные радиусы, найдем фокусы гиперболы:
$c=sqrtRightarrow c=sqrt=sqrt =5$ Следовательно, фокусы имеют координаты $F_1(-5, 0), F_2(5, 0).$
Фокальные радиусы точки, можно найти по формулам $r_1=|overline|$ и $r_2=|overline|.$
$D_1: x=-fracRightarrow x=-fracRightarrow 5x+16=0;$
$D_2: x=fracRightarrow x=fracRightarrow 5x-16=0;$
Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$
Таким образом, расстояние от точки $M(5, 9/4)$ до прямой $D_1: sqrt 5x+16=0$
расстояние от точки $M(5, 9/4)$ до прямой $D_2: sqrt 5x-16=0$
Ответ: $r_1=9/4,$ $r_2=frac;$ $d_1=frac;$ $d_2=frac.$
2.273. Найти точки гиперболы $frac-frac=1,$ находящиеся на расстоянии $7$ от фокуса $F_1.$
Из уравнения гиперболы находим полуоси: $a=3, , b=4.$ Следовательно, $c=sqrtRightarrow c=sqrt=sqrt =5.$
Решим уравнение $5x^2+18x-72=0:$
Находим соответствующие координаты $y:$ $y_1=pmsqrt=sqrt$ — нет корней .
Парабола с каноническим уравнением $y^2=2px, p>0,$ и меет форму изображенную на рисунке.
Число $p$ называется параметром параболы. Точка $O -$ ее вершиной, а ось $Ox$ — осью параболы.
2.285 (а). Построить параболу $y^2=6x$ и найти ее параметры.
Параметр $p$ параболы можно найти из канонического уравнения $y^2=2px: $
$$y^2=6xRightarrow y^2=2cdot 3xRightarrow p=2.$$
Уравнение параболы, центр которой сдвинут в точку $(x_0, y_0),$ имеет вид $(y-y_0)^2=2p(x-x_0)^2.$
Приведем заданное уравнние к такому виду:
Таким образом, $y^2=4(x^2-2)$ — парабола с центром в точке $(0, 2).$ Параметр $p=2.$
2.290. Вычислить фокальный параметр точки $M$ параболы $y^2=12x,$ если $y(M)=6.$
Таким образом, точка $M$ имеет координаты $(3, 6).$
Далее находим фокальный параметр точки:
Координаты фокуса $F(p/2, 0)Rightarrow F(3,0).$
Чтобы найти $b,$ в уравнение прямой подставим координаты точки $(3, 0):$
Далее, найдем точку пересечения найденной прямой с параболой:
Таким образом, луч пересекает параболу в точке $(27, 18).$
Подставляем все найденные значения в уравнение касательной:
$y-18=frac(x-27)Rightarrow 3y-54=x-27Rightarrow x-3y+27=0.$
$$L_2: x-3y+27=0Rightarrow y=fracx+9Rightarrow k_2=frac.$$
Дан эллипс 9x² + 25y² = 225 найти а) его полуоси б) фокусы в) эксцентриситет г) уравнения директрис?
Математика | 10 — 11 классы
Дан эллипс 9x² + 25y² = 225 найти а) его полуоси б) фокусы в) эксцентриситет г) уравнения директрис.
Каноническое уравнение эллипса
Представим уравнение эллипса в каноническом виде.
Для этого обе части равенства разделим на 225 и в знаменателях дроби выделим квадраты.
Полуоси эллипсаа = 5, b = 3.
Полуоси и фокусное расстояние связаны следующим равенством
Фокусы эллипса : F₁ (4 ; 0), F₂ ( — 4 ; 0).
Эксцентриситет вычисляется по формуле :
Эксцентриситет эллипса : ε = 4 / 5
Уравнения директрис эллипса находятся по формуле :
Уравнения директрис эллипса : d₁ : х = 6, 25, d₂ : х = — 6, 25.
Видео:213. Фокус и директриса параболы.Скачать
Дан эллипс x ^ 2 / 7 + y ^ 2 / 16 = 1?
Дан эллипс x ^ 2 / 7 + y ^ 2 / 16 = 1.
Найдите его эксцентриситет.
Видео:166. Найти каноническое уравнение эллипса.Скачать
Записать уравнение окружности, проходящей через фокусы эллипса 24х2 + 25у2 = 600 и имеющей центр в точке А(0 ; 6)?
Записать уравнение окружности, проходящей через фокусы эллипса 24х2 + 25у2 = 600 и имеющей центр в точке А(0 ; 6).
Видео:Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать
Составьте уравнение эллипса, фокусы которого лежат на оси ординат, E = 0, 6 и 2b = 10 ?
Составьте уравнение эллипса, фокусы которого лежат на оси ординат, E = 0, 6 и 2b = 10 .
Видео:Эллипс (часть 8). Решение задач. Высшая математика.Скачать
Составить уравнение эллипса, у которого эксцентриситет равен 0, 8, а фокальные радиусы одной из его точек равны 2 и 3?
Составить уравнение эллипса, у которого эксцентриситет равен 0, 8, а фокальные радиусы одной из его точек равны 2 и 3.
Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Составить каноническое уравнение эллипса, если известно, что расстояние между фокусом равна 6, а большая полуось — 5 единицам?
Составить каноническое уравнение эллипса, если известно, что расстояние между фокусом равна 6, а большая полуось — 5 единицам.
Видео:§29 Эксцентриситет гиперболыСкачать
Построить кривую, заданную уравнением?
Построить кривую, заданную уравнением.
Найти : а) полуоси (для эллипса и гиперболы) ; б) координаты фокусов ; в) эксцентриситет (для эллипса и гиперболы) ; г) уравнения директрис.
Уравнения кривой y2(в квадрате) + 4х — 4 = 0.
Видео:Видеоурок "Эллипс"Скачать
Составить каноническое уравнение эллипса, если его большая полуось равна 12, а эксцентриситет равен 0, 8?
Составить каноническое уравнение эллипса, если его большая полуось равна 12, а эксцентриситет равен 0, 8.
Найти расстояние между фокусами эллипса.
Видео:Аналитическая геометрия: окружность и эллипсСкачать
Найти полуоси координаты фокусов и эксцентриситет и уравнение директрис эллипса 16х ^ 2 + 25y ^ 2 — 400 = 0?
Найти полуоси координаты фокусов и эксцентриситет и уравнение директрис эллипса 16х ^ 2 + 25y ^ 2 — 400 = 0.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Составить каноническое уравнение параболы с вершиной в начале координат, симметричной ОУ , фокус которой в точке F(0 ; — 3) Составить уравнение эллипса , проходящего через точку А(4 ; 6) , фокусы кото?
Составить каноническое уравнение параболы с вершиной в начале координат, симметричной ОУ , фокус которой в точке F(0 ; — 3) Составить уравнение эллипса , проходящего через точку А(4 ; 6) , фокусы которого совпадают с фокусами гиперболы x ^ 2 — y ^ 2 = 8.
Видео:11 класс, 52 урок, ЭллипсСкачать
Эксцентриситет эллипса 5х ^ 2 + 9y ^ 2 = 45 равен?
Эксцентриситет эллипса 5х ^ 2 + 9y ^ 2 = 45 равен.
Вы зашли на страницу вопроса Дан эллипс 9x² + 25y² = 225 найти а) его полуоси б) фокусы в) эксцентриситет г) уравнения директрис?, который относится к категории Математика. По уровню сложности вопрос соответствует учебной программе для учащихся 10 — 11 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.
А)S = a * b S = 20 * 10 = 200 (см ^ 2) б)V = a * b * c V = 20 * 10 * 3 = 600 (см ^ 3).
Везде где нне написано что то ставь ? Знак.
40 / 2 = 20 (ш) — красных20 / 4 = 5 (ш) — желтых40 — 20 — 5 = 15 (ш) — голубых и зеленых Ответ : 15 шт.
40 / 2 = 20 красных20 / 4 = 5 желтых40 — 20 — 5 = 15 голубых и зеленых.
6. 1)0, 6 + 0, 4 = 1 2)0, 7 + 0, 5 = 1, 2 3)0, 75 — 0, 3 = 0, 45.
4x — 2x — 2 — 5 = 7x — 7 — 5x = 0 x = 0 одз х не равен 1.
Х — весь путь х — (3 / 11 * х + 2 / 11 * х) = 240 6 / 11 * х = 240 х = 440.
Сорока способами может быть получен предмет.
ДАНО p = 0. 4 — вероятность ВС n = 6 — количество проб НАЙТИ P(n.
129 * На 2, если * = 0 ; 2 ; 4 ; 6 ; 8. У вас 10 — нельзя, 10 двузначное а * это одна цифра не две. На 5, если * = 0 ; 5. На 45, если сумма цифр числа делится на 9, и вконце числа 5 или 0. Число 129 * пусть * = 0 ; 1290 = 1 + 2 + 9 + 0 = 12 сумма..
Видео:Кривые второго порядка. ЗадачиСкачать
Составить уравнение эллипса фокусы которого имеют координаты
Определение. Эллипс – это геометрическая фигура, которая ограничена кривой, заданной уравнением .
Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.
Видео:кривые второго порядка (решение задач)Скачать
Чертеж фигуры эллипс
с – половина расстояния между фокусами;
a – большая полуось;
b – малая полуось.
Теорема. Фокусное расстояние и полуоси связаны соотношением:
Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2*(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r1 + r 2 = a – c + a + c. Т.к. по определению сумма r1 + r 2 – постоянная величина, то , приравнивая, получаем:
Эксцентриситет фигуры эллипс
Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .
Если a = b ( c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.
Если для точки М(х 1 , у 1 ) выполняется условие: , то она находится внутри эллипса, а если
, то точка находится вне его.
Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :
Доказательство. Выше было показано, что r1 + r2 = 2 a . Кроме того, из геометрических соображений можно записать:
После возведения в квадрат и приведения подобных слагаемых:
Аналогично доказывается, что r2 = a + ex . Теорема доказана.
Директрисы фигуры эллипс
С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:
x = a / e ; x = – a / e .
Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.
Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением :
Координаты нижней вершины: x = 0; y 2 = 16; y = -4.
Координаты левого фокуса: c 2 = a 2 – b 2 = 25 – 16 = 9; c = 3; F2 (-3; 0).
Уравнение прямой, проходящей через две точки:
Пример. Составить уравнение границы фигуры эллипс, если его фокусы F 1 (0; 0), F2 (1; 1), большая ось равна 2.
Уравнение границы имеет вид: . Расстояние между фокусами:
2 c = , таким образом, a 2 – b 2 = c 2 = 1/2
по условию 2а = 2, следовательно а = 1, b =
Итого искомое уравнение имеет вид: .
УСЛОВИЕ:
Составить уравнение эллипса, зная, что:
а) его большая полуось равна 10 и фокусы суть F1(-6;0), F2(10;0)
б) а=5, F1(-3;5), F2(3;5)
2.
Составить каноническое уравнение эллипса, фокусы которого расположены на оси Ох, симметрично относительно начала координат, если:
а)задана точка M1(2 корня из 3;1) эллипса и его малая полуось равна 2
б) заданы две точки эллипса M1(0;7) и M2(8;0)
в)расстояние между фокусами равно 24 и большая ось равна 26
г) экцентриситет равен 7/25 и заданы фокусы (+-7;0)
Добавил maryney23 , просмотры: ☺ 3749 ⌚ 2018-12-29 21:53:45. предмет не задан класс не задан класс
Решения пользователей
РЕШЕНИЕ ОТ sova
M- середина F_(1)F_(2)
x_(M)=(-6+10)/2=2
y_(M)=0
M(2;0)
Прямая x=2 -оcь симметрии эллипса
О т в е т.(x-2)^2/(10^2)+(y^2/6^2)=1
б) F_(1)(-3;5); F_(2)=(3;5)⇒
c=3
Прямая
y=5 – ось симметрии эллипса
О т в е т.(x^2/5^2)+((y-5)^2/4^2)=1
2. Если фокусы эллипса расположены на оси Ох, симметрично относительно начала координат, то каноническое уравнение эллипса имеет вид
(x^2/a^2)+(y^2/b^2)=1
а)
b=2
(x^2/a^2)+(y^2/4)=1
Подставляем координаты точки M_(1):
(12/a^2)+(1/4)=1
(12/a^2)=3/4
a^2=16
О т в е т. (x^2/4^2)+(y^2/2^2)=1
О т в е т. (x^2/8^2)+(y^2/7^2)=1
в)
2с=24 ⇒ с=12
2а=26 ⇒ а=13
b^2=a^2-с^2=13^2-12^2=169-144=25=5^2
О т в е т. (x^2/13^2)+(y^2/5^2)=1
г)
F( ± c;0) ⇒ c=7
ε=с/а
c/a=7/25
a=25
b^2=a^2-c^2=625-49=576=24^2
О т в е т. (x^2/25^2)+(y^2/24^2)=1
Консультации и решение задач по алгебре, геометрии, анализу, дискретной математике.
Лучшие эксперты в этом разделе
Коцюрбенко Алексей Владимирович Статус: Модератор Рейтинг: 1702 | epimkin Статус: Бакалавр Рейтинг: 385 | Roman Chaplinsky / Химик CH Статус: Модератор Рейтинг: 372 |
Перейти к консультации №: |
здравствуйте помогите пожалуйста.
Составить уравнение эллипса, фокусы которого имеют координаты (0;4√2) и (0;- 4√2) , а малая ось равна 14. спасибо за помощь
Состояние: Консультация закрыта
Здравствуйте, анисимова юлия александровна!
Уравнение эллипса имеет вид
x²/a² + y²/b² = 1 (если фокусы расположены на оси Ox)
или
x²/b² + y²/a² = 1 (если фокусы расположены на оси Oy).
У нас второй случай.
Фокусы эллипса имеют координаты (0; 4√2) и (0; -4√2), значит, c = 4√2.
Малая ось равна 14, т.е. b = 14.
У эллипса
a² = b² + c².
Значит,
a² = 196 + 32 = 228.
Ответ: x²/196 + y²/228 = 1.
Консультировал: Агапов Марсель Дата отправки: 15.01.2008, 22:17 |
0
Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.