Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.
Найти решение задачи Коши для дифференциального уравнения:
при заданных начальных условиях:
При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .
Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:
удовлетворяющее начальным условиям:
Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:
Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:
Далее, поставляем начальные условия в функцию и её производную :
Решая полученную систему уравнений получаем значения произвольных постоянных и :
Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Другие полезные разделы:
Видео:Пример 65. Решить задачу Коши (диффуры)Скачать
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:Задача Коши ДУ I п. 1. Caushy`s ProblemСкачать
Решение задачи Коши
Онлайн калькулятор для решения задачи Коши. Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).
Для того чтобы решить задачу Коши необходимо найти общее решение дифференциального уравнения, а потом подставить начальные условия и найти неизвестные коэффициенты С1 и С2.
Данный калькулятор решает задачу Коши для дифференциального уравнения второго порядка.
В калькулятор вводим дифференциальное уравнение и начальные условия, как указано в примере, нажимаем кнопку «Вычислить», получаем ответ.
🌟 Видео
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Задача Коши для дифференциальных уравненийСкачать
Частное решение дифференциального уравнения. 11 класс.Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Операционный метод для задачи КошиСкачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Задача Коши для системы д. у.Скачать
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Задача Коши. Решить используя рядыСкачать
Видеоурок "Дифференциальные уравнения. Задача Коши"Скачать
Решить задачу КошиСкачать
Дифференциальные уравнения. 11 класс.Скачать