Найти размерность и базис подпространства заданного системой линейных уравнений

Решебник.Ру / Кузнецов Л.А. Линейная алгебра. Задача 3

Системы линейных однородных уравнений

Постановка задачи. Найти какой-нибудь базис и определить размерность линейного пространства решений системы

Найти размерность и базис подпространства заданного системой линейных уравнений

1. Записываем матрицу системы:

Найти размерность и базис подпространства заданного системой линейных уравнений

и с помощью элементарных преобразований преобразуем матрицу к треугольному виду, т.е. к такому виду, когда все элементы, находящиеся ниже главной диагонали равны нулю. Ранг матрицы системы равен числу линейно независимых строк, т.е., в нашем случае, числу строк, в которых остались ненулевые элементы:

Найти размерность и базис подпространства заданного системой линейных уравнений.

Размерность пространства решений равна Найти размерность и базис подпространства заданного системой линейных уравнений. Если Найти размерность и базис подпространства заданного системой линейных уравнений, то однородная система имеет единственное нулевое решение, если Найти размерность и базис подпространства заданного системой линейных уравнений, то система имеет бесчисленное множество решений.

2. Выбираем Найти размерность и базис подпространства заданного системой линейных уравненийбазисных и Найти размерность и базис подпространства заданного системой линейных уравненийсвободных переменных. Свободные переменные обозначаем Найти размерность и базис подпространства заданного системой линейных уравнений. Затем базисные переменные выражаем через свободные, получив таким образом общее решение однородной системы линейных уравнений.

3. Записываем базис пространства решений системы полагая последовательно одну из свободных переменных равной единице, а остальные нулю. Размерность линейного пространства решений системы равна количеству векторов базиса.

Примечание. К элементарным преобразованиям матрицы относят:

1. умножение (деление) строки на множитель, отличный от нуля;

2. прибавление к какой-либо строке другой строки, умноженной на любое число;

3. перестановка строк местами;

4. преобразования 1–3 для столбцов (в случае решения систем линейных уравнений элементарные преобразования столбцов не используются).

Задача 3. Найти какой-нибудь базис и определить размерность линейного пространства решений системы.

Найти размерность и базис подпространства заданного системой линейных уравнений

Выписываем матрицу системы и с помощью элементарных преобразований приводим ее к треугольному виду:

Найти размерность и базис подпространства заданного системой линейных уравнений

Полагаем Найти размерность и базис подпространства заданного системой линейных уравнений, тогда

Найти размерность и базис подпространства заданного системой линейных уравненийНайти размерность и базис подпространства заданного системой линейных уравнений

Найти размерность и базис подпространства заданного системой линейных уравнений.

Размерность линейного пространства решений равна 3.

:: Рекомендуемая литература. Ремендуем покупать учебную литературу в интернет-магазине Озон

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Примеры решений. Линейные пространства

В этом разделе вы найдете бесплатные решения задач о линейных пространствах по темам: проверка линейности подпространства, базис пространства и подпространства, ортогональное подпространство, размерность.

Видео:Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Решения задач: линейные пространства

Задача 1. Образует ли линейное подпространство пространства $R^4$ множество $V$, заданное по правилу:

Задача 2. Даны векторы $e_1, e_2, e_3, e_4$ и $a$ в стандартном базисе пространства $R^4$.
Требуется:
а) убедиться, что векторы $e_1, e_2, e_3, e_4$ образуют базис пространства $R^4$;
б) найти разложение вектора $a$ по этому базису;
в) найти угол между векторами $e_1$ и $e_2$.

Задача 3.Найти ортогональный базис подпространства $L$, заданного системой уравнений, и базис подпространства $L^$

Задача 4. Для каждого из следующих множеств геометрических векторов определить, будет ли это множество линейным подпространством пространства $V_3$ :
1) радиус-векторы точек данной плоскости;
2) векторы, образующие с данным ненулевым вектором $overline$ угол $alpha$;
3) множество векторов, удовлетворяющих условию $|overline|=1$ .

Задача 5. Пусть $L$ — множество многочленов степени не выше 2, удовлетворяющих условию $p(1)+p'(1)+p»(1)=0$. Доказать, что $L$ — линейное подпространство в пространстве $P_2$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Задача 6. Образуют ли многочлены $p_1(x)=x^3+x^2-1$, $p_2(x)=x^2-2x$, $p_3(x)=x^3+x$, $p_4(x)=x^2-3$ базис в пространстве $P_3$?

Задача 7. Доказать, что матрицы вида $$ begin 2a & a+3b-2c\ b & 5c\ end $$ образуют линейное подпространство в пространстве матриц $M_$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

VMath

Инструменты сайта

Основное

Информация

Действия

Содержание

Благодарю Ю.А.Смолькина за обнаружение 07.08.19 ошибки на настоящей странице и информирование о ней.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Линейное пространство

Видео:Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Определения

Пусть дано множество $ mathbb V_=left $ элементов произвольной природы. Пусть для элементов этого множества определены две операции: сложения $ X+Y_ $ и умножения на любое вещественное число $ alpha_ $: $ alpha cdot X_ $, и множество $ mathbb V_ $ замкнуто относительно этих операций: $ X+Y in mathbb V , alpha cdot X in mathbb V_ $. Пусть эти операции подчиняются аксиомам:

1. $ X+Y=Y+X_ $ для $ subset mathbb V_ $;

2. $ (X+Y)+Z_=X+(Y+Z) $ для $ subset mathbb V_ $;

3. в $ mathbb V_ $ cуществует нулевой вектор $ mathbb O_ $ со свойством $ X+ mathbb O =X_ $ для $ forall Xin mathbb V_ $;

4. для каждого $ Xin mathbb V_ $ существует обратный вектор $ X^in mathbb V_ $ со свойством $ X+X^=mathbb O_ $;

5. $ 1cdot X=X_ $ для $ forall Xin mathbb V_ $;

6. $ lambda left(mu X right)_= left(lambda mu right)X $ для $ forall Xin mathbb V_ $, $ subset mathbb R_ $ ;

7. $ (lambda + mu)X=lambda X + mu X_ $ для $ forall Xin mathbb V_ $, $ subset mathbb R_ $ ;

8. $ lambda (X + Y) =lambda X_ + lambda Y $ для $ subset mathbb V_ , lambda in mathbb R $.

Тогда такое множество $ mathbb V_ $ называется линейным (векторным) пространством, его элементы называются векторами, и — чтобы подчеркнуть их отличие от чисел из $ mathbb R_ $ — последние называются скалярами 1) . Пространство, состоящее из одного только нулевого вектора, называется тривиальным .

Элементарно доказывается единственность нулевого вектора, и единственность вектора, обратного вектору $ Xin mathbb V_ $: $ X^=-1cdot X_ $, его привычно обозначают $ — X_ $.

Подмножество $ mathbb V_ $ линейного пространства $ mathbb V_ $, само являющееся линейным пространством (т.е. $ mathbb V_ $ замкнуто относительно сложения векторов и умножения на произвольный скаляр), называется линейным подпространством пространства $ mathbb V_ $. Тривиальными подпространствами линейного пространства $ mathbb V_ $ называются само $ mathbb V_ $ и пространство, состоящее из одного нулевого вектора $ mathbb O_ $.

Видео:Базисные решения систем линейных уравнений (03)Скачать

Базисные решения систем линейных уравнений (03)

Примеры линейных пространств

Пример 1. Пространство $ mathbb R^ $ упорядоченных троек вещественных чисел $ (a_1,a_2,a_) $ с операциями, определяемыми равенствами:

$$ (a_1,a_2,a_3)+(b_1,b_2,b_3)= (a_1+b_1,a_2+b_2,a_3+b_3), alpha (a_1,a_2,a_3) = ( alpha a_1, alpha a_2, alpha a_3 ) . $$ Геометрическая интерпретация очевидна: вектор в пространстве, «привязанный» к началу координат, может быть задан координатами своего конца $ (a_1,a_2,a_) $. На рисунке показано и типичное подпространство пространства $ mathbb R^ $: плоскость, проходящая через начало координат. Найти размерность и базис подпространства заданного системой линейных уравнений Точнее говоря, элементами $ mathbb V_1 $ являются векторы, имеющие начало в начале координат и концы — в точках плоскости. Замкнутость такого множества относительно сложения векторов и их растяжения 2) очевидна.

Пример 2. Основываясь на том же примере, можно дать и иную интерпретацию векторного пространства $ mathbb V_1 $ (заложенную, кстати, уже в самом происхождении слова «вектор» 3) ) — оно определяет набор «сдвигов» точек пространства $ mathbb R^ $. Эти сдвиги — или параллельные переносы любой пространственной фигуры — выбираются параллельными плоскости $ mathbb V_1 $.

Пример 3. Естественным обобщением $ mathbb R^ $ служит пространство $ mathbb R_^ $: векторное пространство строк $ (x_1,dots,x_) $ или столбцов $ (x_1,dots,x_n)^ $. Один из способов задания подпространства в $ mathbb R_^ $ — задание набора ограничений. Множество решений системы линейных однородных уравнений:

$$ left<begin a_x_1 +a_x_2+ldots+a_x_n &=&0,\ a_x_1 +a_x_2+ldots+a_x_n &=&0,\ ldots& & ldots \ a_x_1 +a_x_2+ldots+a_x_n &=&0 endright. iff AX=mathbb O $$ образует линейное подпространство пространства $ mathbb R_^ $. В самом деле, если $$x_1=alpha_1,dots, x_n=alpha_n $$ — решение системы, то и $$x_1=t alpha_1,dots, x_n= t alpha_n $$ — тоже решение при любом $ t in mathbb R $. Если $$x_1=beta_1,dots, x_n=beta_n $$ — еще одно решение системы, то и $$x_1=alpha_1+beta_1,dots,x_n=alpha_n+beta_n $$ — тоже будет ее решением.

Почему множество решений системы неоднородных уравнений не образует линейного подпространства?

Пример 4. Обобщая далее, можем рассмотреть пространство «бесконечных» строк или последовательностей

$$ (x_1,dots,x_n, dots ) , , $$ обычно являющееся объектом математического анализа — при рассмотрении последовательностей и рядов. Подпространство этого пространства образуют, например, линейные рекуррентные последовательности $ _ $ удовлетворяющие — при произвольных числах $ <x_0,dots x_> subset mathbb R $ — линейному однородному разностному уравнению $ n_ $-го порядка, $$ x_=a_1 x_+ dots+ a_n x_K npu K in ; $$ здесь числа $ < a_1,dots,a_, a_n ne 0 > subset mathbb R $ считаются фиксированными.

Пример 5. Множество $ mtimes n_ $-матриц с вещественными элементами с операциями сложения матриц и умножения на вещественные числа образует линейное пространство. Будем обозначать это пространство $ mathbb R^ $.

В пространстве квадратных матриц фиксированного порядка каждое из следующих подмножеств составляет линейное подпространство: симметричных, кососимметричных, верхнетреугольных, нижнетреугольных и диагональных матриц.

Пример 6. Множество полиномов одной переменной $ x_ $ степени в точности равной $ n_ $ с коэффициентами из $ mathbb A_ $ (где $ mathbb A_ $ — любое из множеств $ mathbb Z, mathbb Q, mathbb R_ $ или $ mathbb C_ $) с обычными операциями сложения полиномов и умножения на число из $ mathbb A_ $ не образует линейного пространства. Почему? — Потому что оно не является замкнутым относительно сложения: сумма полиномов

$$ f(x)=x^n -x+1 quad mbox quad g(x)=-x^n+x^-2 $$ не является полиномом $ n_ $-й степени. Но вот множество полиномов степени не выше $ n_ $ $$ mathbb P_n= left

$$ линейное пространство образует; только к этому множеству надо придать еще и тождественно нулевой полином 4) . Очевидными подпространствами $ mathbb P_ $ являются $ mathbb P_, mathbb P_1,dots,mathbb P_ $. Кроме того, подпространствами будут множество четных и множество нечетных полиномов степени не выше $ n_ $. Множество всевозможных полиномов

$$ mathbb P= bigcup_^ mathbb P_n $$ (без ограничения на степени) тоже образует линейное пространство.

Пример 7. Обобщением предыдущего случая будет пространство полиномов нескольких переменных $ x_1,dots, x_ $ степени не выше $ n_ $ с коэффициентами из $ mathbb A_ $. Например, множество линейных полиномов

$$ left< a_1x_1+dots+a_x_+b big| (a_1,dots,a_,b) in mathbb A^ right> $$ образует линейное пространство. Множество однородных полиномов (форм) степени $ n_ $ (с присоединением к этому множеству тождественно нулевого полинома) — также линейное пространство.

Видео:Базисные решения систем линейных уравнений (01)Скачать

Базисные решения систем линейных уравнений (01)

Изоморфизм

Пусть имеются два линейных пространства разной природы: $ mathbb V_ $ с операцией $ +_ $ и $ mathbb W_ $ с операцией $ boxplus_ $. Может оказаться так, что эти пространства «очень похожи», и свойства одного получаются простым «переводом» свойств другого.

Говорят, что пространства $ mathbb V_ $ и $ mathbb W_ $ изоморфны если между множествами их элементов можно установить такое взаимно-однозначное соответствие, что если $ X_ leftrightarrow X^ $ и $ Y_ leftrightarrow Y^ $ то $ X+Y leftrightarrow X_^ boxplus Y^ $ и $ lambda X_ leftrightarrow lambda X^ $.

При изоморфизме пространств $ mathbb V_ $ и $ mathbb W_ $ нулевому вектору одного пространства будет соответствовать нулевой вектор другого пространства.

Пример. Пространство $ mathbb R^_ $ изоморфно пространству $ mathbb P_^ $. В самом деле, изоморфизм устанавливается соответствием $$ [a_1,dots,a_n] leftrightarrow a_1+a_2x+dots + a_nx^ .$$

Пример. Пространство $ mathbb R^ $ вещественных матриц порядка $ m_times n $ изоморфно пространству $ mathbb R_^ $. Изоморфизм устанавливается с помощью операции векторизации матрицы (матрица «вытягивается» в один столбец).

Пример. Пространство квадратичных форм от $ n_ $ переменных изоморфно пространству симметричных матриц $ n_ $-го порядка. Изоморфизм устанавливается соответствием, которое мы проиллюстрируем для случая $ n=3_ $:

$$ a_x_1^2+a_x_1x_2+a_x_1x_3+a_x_2^2+a_x_2x_3+a_x_3^2 leftrightarrow left( begin a_ & fraca_ & fraca_ \ fraca_ & a_ & fraca_ \ fraca_ & fraca_ & a_ end right) . $$

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Линейная зависимость, базис, координаты

Линейной комбинацией системы векторов $ <X_1,dots,X_> $ называется произвольный вектор $$ alpha_1 X_1+dots+ alpha_m X_m $$ при каких-то фиксированных значениях скаляров $ alpha_, dots, alpha_ $.

Множество всевозможных линейных комбинаций системы векторов $ <X_1,dots,X_> $ $$ left< alpha_1 X_1+dots+ alpha_m X_m bigg| subset mathbb R right> $$ называется линейной оболочкой векторов $ X_1,dots,X_ $ и обозначается $ (X_1,dots,X_) $.

Теорема 1. Линейная оболочка векторов $ X_1,dots,X_ $ образует линейное подпространство пространства $ mathbb V_ $.

Пример. В пространстве $ mathbb P_ $ полиномов степеней $ le n_ ge 3 $ линейной оболочкой полиномов $ x,x^2,x^3 $ будет множество полиномов вида $ a_0x^3+a_1x^2+a_2x $, т.е. множество полиномов степеней $ le 3 $, имеющих корень $ lambda_=0 $. ♦

Система векторов $ < X_,dots,X_m > $ называется линейно зависимой (л.з.) если существуют числа $ alpha_,dots,alpha_m $, такие что хотя бы одно из них отлично от нуля и $$ alpha_1X_1+dots+alpha_mX_m=mathbb O $$ Если же это равенство возможно только при $ alpha_=0,dots,alpha_m=0 $, то система векторов называется линейно независимой (л.н.з.).

Пример. Для полиномов нескольких переменных свойство линейной зависимости является частным проявлением более общего свойства функциональной зависимости. Так, однородные полиномы (формы)

$$ f_1=(x_1+x_2+x_3)^2,quad f_2=x_1x_2+x_1x_3+x_2x_3,quad f_3=x_1^2+x_2^2+x_3^2 $$ являются линейно зависимыми, поскольку $$ f_1-2,f_2-f_3 equiv 0 . $$ Полиномы $$ tilde f_1=x_1+x_2+x_3,quad f_2=x_1x_2+x_1x_3+x_2x_3,quad f_3=x_1^2+x_2^2+x_3^2 $$ не являются линейно зависимыми, но являются функционально зависимыми, поскольку $$ tilde f_1^2-2,f_2-f_3 equiv 0 . $$ ♦

Теорема 2. а) Если система содержит хотя бы один нулевой вектор, то она л.з.

б) Если система л.н.з., то и любая ее подсистема л.н.з.

в) При $ m>1 $ система $ <X_,dots,X_m> $ л.з. тогда и только тогда, когда по меньшей мере один ее вектор линейно выражается через остальные, т.е. существуют $ jin $ и константы $ gamma_,dots,gamma_, gamma_,dots,gamma_ $ такие, что $$ X_j=gamma_1X_1+dots+gamma_X_+ gamma_X_+dots + gamma_X_ .$$

Теорема 3. Если каждый из векторов системы $ < X_1,dots,X_> $ линейно выражается через векторы другой системы $ < B_,dots,B_k > $ с меньшим числом векторов: $ k ☞ ЗДЕСЬ.

Две системы векторов называются эквивалентными если каждый вектор одной системы линейно выражается через векторы другой и обратно.

Теорема 4. Системы векторов

$$ < X_1,dots,X_> quad mbox quad < Y_,dots,Y_k > $$ будут эквивалентными тогда и только тогда когда совпадают линейные оболочки этих систем: $$(X_1,dots,X_m)=(Y_1,dots,Y_k) . $$

Теорема 5. Если каждая из двух эквивалентных систем

$$ < X_1,dots,X_> quad mbox quad < Y_,dots,Y_k > $$ является л.н.з., то эти системы состоят из одинакового числа векторов: $ m=k_ $ .

Линейно независимая система векторов $ <X_>subset mathbb V $ называется базисом этого пространства если каждый $ Xin mathbb V $ можно представить в виде линейной комбинации указанных векторов: $$ X=sum_ alpha_j X_j . $$

При этом не подразумевается конечность системы, т.е. суммирование может распространяться на бесконечное число слагаемых. Так, например, пространство бесконечных строк (или последовательностей) $ left[a_,a_2,dots, right] $ имеет бесконечный базис, состоящий из векторов $$ [underbrace_j,0,dots , ] quad npu j in mathbb N . $$

В случае, когда базис пространства $ mathbb V_ $ конечен, пространство $ mathbb V_ $ называется конечномерным, а число векторов базиса тогда называется размерностью пространства $ mathbb V_ $ и обозначается 5) : $ dim mathbb V_ $. Также полагают, что размерность тривиального пространства, состоящего из одного только нулевого вектора, равна нулю: $ dim <mathbb O_>= 0 $.

Пример. Линейное пространство $ mtimes n_ $ матриц имеет размерность $ mn_ $. Так, для случая $ m_=3 ,n=2 $ в качестве базиса можно выбрать следующий набор матриц

$$ left( begin 1 & 0 \ 0 & 0 \ 0 & 0 end right) , left( begin 0 & 1 \ 0 & 0 \ 0 & 0 end right) , left( begin 0 & 0 \ 1 & 0 \ 0 & 0 end right) , left( begin 0 & 0 \ 0 & 1 \ 0 & 0 end right) , left( begin 0 & 0 \ 0 & 0 \ 1 & 0 end right) , left( begin 0 & 0 \ 0 & 0 \ 0 & 1 end right) . $$ ♦

Найти размерности подпространства симметричных и подпространства кососимметричных матриц порядка $ n_ $.

Пример [1]. Замечательный пример трехмерного линейного пространства дает нам совокупность всех цветов. Под суммой двух цветов будем понимать цвет, образованный их смешением

Найти размерность и базис подпространства заданного системой линейных уравнений

под умножением цвета на положительное число $ k_ $ — увеличение в $ k_ $ раз яркости цвета

Анимация ☞ ЗДЕСЬ (1500 K, gif)

под умножением на $ (-1) $ — взятие дополнительного цвета. При этом оказывается, что совокупность всех цветов выражается линейно через три цвета: красный, зеленый и синий, т.е. образует трехмерное линейное пространство. (Точнее, некоторое тело в трехмерном пространстве, поскольку яркости цветов ограничены верхним порогом раздражения.) Исследование этого трехмерного тела всех цветов является важным орудием цветоведения. ♦

Если $ dim mathbb V=d_ $ и вектора $ X_1,dots,X_ $ являются базисными для $ mathbb V_ $, то разложение вектора $ X in mathbb V_ $ в сумму: $$ X=alpha_1 X_1+dots+ alpha_d X_d .$$ называется разложением вектора $ X_ $ по базису $ X_1,dots,X_ $; при этом числа $ alpha_1,dots, alpha_ $ называются координатами вектора $ X_ $ в данном базисе.

Теорема 6. Если $ dim mathbb V=d>0 $, то любая система из $ d_ $ линейно независимых векторов пространства образует базис этого пространства.

Доказательство. Пусть $ $ — л.н.з. система. Рассмотрим произвольный $ Xin mathbb V_ $. Если система $ $ л.н.з., то $ dim mathbb V ge d+1 $, что противоречит условию теоремы. Следовательно, система линейно зависима: $ alpha_0X+alpha_1Y_1+dots+alpha_dY_d=mathbb O $ при каком-то из чисел $ _^ $ не равном нулю. Если $ alpha_0=0 $, то $ alpha_1Y_1+dots+alpha_dY_d=mathbb O $ при каком-то ненулевом коэффициенте. Это означает, что система $ $ линейно зависима, что противоречит предположению. Следовательно $ alpha_0ne 0 $, но тогда вектор $ X_ $ может быть представлен в виде линейной комбинации векторов $ Y_1,dots,Y_d $: $$X=- / Y_1-dots -/Y_d .$$ По определению, система $ $ является базисом $ mathbb V $. ♦

Теорема 7. Любой вектор $ X in mathbb V_ $ может быть разложен по фиксированному базису пространства единственным образом.

Очевидно, $ dim mathbb R^ = n $: строки из $ n_ $ элементов $$[1,0,0,dots,0], [0,1,0,dots,0], [0,0,1,dots,0], dots , [0,0,0,dots,1] $$ образуют базис этого пространства.

Имеются два способа задания линейных подпространств в $ mathbb R^_ $. Пусть $$ mathbb V_1 = (A_1,dots,A_k) quad npu subset mathbb R^n .$$ В разделе ☞ РАНГ установлено, что $$ dim mathbb V_1 = operatorname = operatorname (A) ,$$ где $ A_ $ — матрица, составленная из строк (столбцов) $ A_,dots,A_k $.

Пример. Найти базис подпространства

Решение. Ищем $$ operatorname left( begin 1 & 2 & 1 & 1 \ -1&0&-1&0 \ -1& 2 &-1 &1 \ 0& 1& 0 & 1 end right) $$ по методу окаймляющих миноров. Существует минор третьего порядка $$ left| begin 1 & 2 & 1 \ -1&0&0 \ 0& 1 & 1 end right| $$ отличный от нуля, а определитель самой матрицы равен нулю. Замечаем, что найденный отличный от нуля минор расположен в первой, второй и четвертой строках матрицы. Именно эти строки и образуют базис.

Ответ. Базис составляют, например, первая, вторая и четвертая строки.

Другим способом задания линейного подпространства в $ mathbb R^ $ может служить задание набора ограничений, которым должны удовлетворять векторы подпространства. Таким набором ограничений может являться, например, система уравнений $$ left<begin a_x_1 +a_x_2+ldots+a_x_n &=&0,\ a_x_1 +a_x_2+ldots+a_x_n &=&0,\ ldots& & ldots \ a_x_1 +a_x_2+ldots+a_x_n &=&0 endright. qquad iff qquad AX=mathbb O . $$ Какова размерность подпространства решений этой системы? На этот вопрос мы ответим сразу же, если вспомним определение фундаментальной системы решений (ФСР). Именно, ФСР — как набор линейно независимых решений, через которые линейно выражается любое решение системы однородных уравнений — является базисом подпространства этих решений.

Теорема 8. Множество решений системы однородных уравнений $ AX=mathbb O_ $ образует линейное подпространство пространства $ mathbb R^ $. Размерность этого подпространства равна $ n-operatorname (A) $, а фундаментальная система решений образует его базис.

Пример. В пространстве $ mathbb P_ $ полиномов степеней $ le n_ $ каноническим базисом можно взять систему мономов $ $, т.е. $ dim mathbb P_ =n+1 $. Координатами полинома

$$ f(x)=a_0+a_1x+a_2x^2+dots+a_nx^n $$ будут его коэффициенты. Можно выбрать и другой базис, например, $ $ при произвольном числе $ c_ $. Координатами полинома в этом базисе будут теперь коэффициенты формулы Тейлора: $$ f(x) equiv f(c)+ frac<f^(c)> (x-c) + frac<f^(c)> (x-c)^2+ dots + frac<f^(c)> (x-c)^ . $$

Найти координаты полинома

Теорема 9. Любое векторное пространство $ mathbb V_ $ размерности $ d_ $ изоморфно $ mathbb R^ $.

Доказательство. Изоморфизм можно установить следующим соответствием. Если $ $ — какой-то базис $ mathbb V_ $, то вектору $ X in mathbb V $ поставим в соответствие набор его координат в этом базисе: $$ X=x_1X_1+dots+x_d X_d Rightarrow X mapsto [x_1,dots,x_d]in mathbb R^d . $$ На основании теоремы $ 6 $, такое соответствие будет взаимно-однозначным, а проверка двух свойств изоморфизма тривиальна. ♦

Критерии линейной зависимости

Теорема . Строки

$$ <(a_,dots,a_),dots, (a_,dots,a_)> subset mathbb C^n $$ линейно зависимы тогда и только тогда, когда $$ left|begin a_&dots & a_ \ dots & & dots \ a_& dots & a_ end right|=0 , . $$

Теорема . Строки

$$ <(a_,dots,a_),dots, (a_,dots,a_)> subset mathbb C^n $$ линейно зависимы тогда и только тогда, когда $$ operatorname A

$$ <(a_,dots,a_),dots, (a_,dots,a_)> subset mathbb R^n $$ линейно зависимы тогда и только тогда, когда $$ det (A^ A) = 0 , . $$ (Определитель в левой части можно интерпретировать как определитель Грама системы строк.)

Теорема . Аналитические на интервале $ ]a,b[ $ функции $ u_1(x),dots,u_n(x) $ линейно зависимы на $ ]a,b[ $ тогда и только тогда, когда их вронскиан

Относительный базис

В настоящем пункте $ mathbb V_1 $ обозначает линейное подпространство пространства $ mathbb V_ $, отличное от тривиального; обозначаем $ d_1=dim mathbb V_1 $.

Теорема. Произвольный базис подпространства $ mathbb V_1 $ можно дополнить до базиса пространства $ mathbb V_ $.

Доказательство. Пусть $ <X_1,dots,X_> $ — какой-то базис $ mathbb V_1 $. В пространстве $ mathbb V_ $ найдется вектор $ X_ $ такой, что система $ <X_1,dots,X_, X_> $ будет л.н.з. (В противном случае, $ dim mathbb V=d_1 $, что противоречит условию настоящего пункта.) Если $ d_1+1=d = dim mathbb V $, то, на основании теоремы 5 предыдущего пункта, требуемый базис построен. Если же $ d_1+1 ♦

Найти размерность и базис подпространства заданного системой линейных уравнений

Говорят, что система векторов $ $ линейно независима относительно подпространства $ mathbb V_1 $ пространства $ mathbb V_ $ если $$_ mbox quad alpha_1X_1+dots+alpha_k X_k in mathbb V_1 quad mbox quad alpha_1=dots=alpha_k=0 .$$

Теорема. Обозначим $ <Y_1,dots,Y_> $ — произвольный базис $ mathbb V_1 $. Система $ <X_,dots,X_k> $ л.н.з. относительно $ mathbb V_1 $ тогда и только тогда, когда система $ <Y_1,dots,Y_,X_1,dots,X_k> $ линейно независима.

Пример. Найти все значения параметра $ <coloralpha > $, при которых система

Решение. Базисом подпространства $ mathbb V_1 $ является произвольная ФСР заданной системы однородных уравнений, например $ <Y_1=[-1,2,1,0]^<^>, Y_2=[6,-5,0,1]^<^>> $. Теорема утверждает, что система $ $ л.н.з. относительно $ mathbb V_1 $ тогда и только тогда, когда система $ $ л.н.з. (в обычном понимании). Последнее равносильно тому, что матрица, составленная из этих векторов, должна иметь ранг равный $ 4_ $. $$operatorname left( begin 1 & 1 &-1 & 6 \ 2 & <coloralpha > & 2 & -5 \ <coloralpha > & 2 & 1 & 0 \ 1 & 1 & 0 & 1 end right)=4 iff left| begin 1 & 1 &-1 & 6 \ 2 & <coloralpha > & 2 & -5 \ <coloralpha > & 2 & 1 & 0 \ 1 & 1 & 0 & 1 end right|= <coloralpha >^2-10, <coloralpha > +16 ne 0 . $$

Ответ. $ <coloralpha >not in $.

Говорят, что система векторов $ $ образует базис пространства $ mathbb V_ $ относительно (или над) $ mathbb V_1 $ если она л.н.з. относительно $ mathbb V_1 $ и любой вектор $ Xin mathbb V_ $ можно представить в виде $$ X=c_1X_1+dots+c_kX_k+Y, quad mbox quad Yin mathbb V_1 . $$

Теорема. Обозначим $ < Y_1,dots,Y_> $ — произвольный базис подпространства $ mathbb V_1 $. Система $ $ образует базис $ mathbb V_ $ относительно $ mathbb V_1 $ тогда и только тогда, когда система $ < X_1,dots,X_k,Y_1,dots,Y_> $ образует базис $ mathbb V_ $.

Доказательство. Действительно, любой вектор $ Xin mathbb V_ $ выражается через векторы $ X_1,dots,X_k,Y_1,dots,Y_ $. По предыдущей теореме для линейной независимости этих векторов необходимо и достаточно относительной линейной независимости $ X_1,dots,X_k $. ♦

Базис $ mathbb V_ $ строится дополнением базиса $ mathbb V_1 $ векторами $ X_1,dots,X_k $ линейно независимыми относительно $ mathbb V_1 $. Поэтому $$_ mbox = dim mathbb V — dim mathbb V_1 .$$

Это число называется коразмерностью 6) подпространства $ mathbb V_1 $ в пространстве $ mathbb V $.

Видео:Базисы суммы и пересечения линейных подпространствСкачать

Базисы суммы и пересечения линейных подпространств

Сумма и пересечение линейных подпространств

Пусть $ mathbb V_1 $ и $ mathbb V_2 $ — подпространства линейного пространства $ mathbb V_ $. Множество $$ mathbb V_1+ mathbb V_2 = left$$ называется суммой, а множество $$ mathbb V_1 cap mathbb V_2 = left$$ — пересечением подпространств $ mathbb V_1 $ и $ mathbb V_2 $. Аналогично определяется сумма и пересечение произвольного количества подпространств.

Понятие пересечения линейных подпространств совпадает с понятием пересечения их как множеств.

Найти размерность и базис подпространства заданного системой линейных уравнений

Теорема. $ mathbb V_1+ mathbb V_2 $ и $ mathbb V_1 cap mathbb V_2 $ являются подпространствами линейного пространства $ mathbb V_ $.

Докажите, что $ mathbb V_1+ mathbb V_2 $ — это подпространство минимальной размерности, содержащее как $ mathbb V_1 $, так и $ mathbb V_2 $.

Теорема. Имеет место формула:

$$ dim , mathbb V_1 + dim , mathbb V_2=dim , (mathbb V_1 cap mathbb V_2) + dim , (mathbb V_1 + mathbb V_2) . $$

Доказательство ☞ ЗДЕСЬ.

Можно ли обобщить этот результат на случай трех (и более подпространств)? Cправедлив ли, к примеру, аналог формулы включений-исключений в следующем виде:

$$dim , mathbb V_1 + dim , mathbb V_2 + dim , mathbb V_3 — $$ $$ -left + $$ $$+ dim , (mathbb V_1 cap mathbb V_2 cap mathbb V_3) =dim , (mathbb V_1 + mathbb V_2 + mathbb V_3) ?$$

Теорема. Имеет место формула:

Пример. Найти базис суммы и размерность пересечения

$$mathbb V_1=left( left[ begin 0 \1 \ 1 \ 1 end right] , left[ begin 1 \1 \ 1 \ 2 end right] , left[ begin -2 \0 \ 1 \ 1 end right] right) quad mbox quad mathbb V_2=left( left[ begin -1 \3 \ 2 \ -1 end right] , left[ begin 1 \1 \ 0 \ -1 end right] right) $$

Решение. Действуя согласно предыдущей теореме, составляем матрицу из всех векторов $$ left( begin 0 & 1 & -2 & -1 & 1 \ 1 & 1 & 0 & 3 & 1 \ 1 & 1 & 1 & 2 & 0 \ 1 & 2 & 1 & -1 & -1 end right) $$ и ищем ее ранг методом окаймляющих миноров. Имеем: $ operatorname = 3 $ при ненулевом миноре матрицы расположенном в первых трех ее столбцах.

Ответ. Базис $ mathbb V_1 + mathbb V_2 $ составляют векторы $ X_1,X_2,X_3 $; $ dim , (mathbb V_1 cap mathbb V_2) = 3+2 — 3 =2 $.

Алгоритм нахождения базиса $ (X_1,dots,X_m) cap (Y_1,dots,Y_) $ проиллюстрируем на примере.

Пример. Найти базис $ mathbb V_1 cap mathbb V_2 $ при

$$ begin mathbb V_1= left( left[ begin 1 \ -1 \ 1 \ -1 \ 1 end right],, left[ begin 1 \ 2 \ 1 \ 2 \ 1 end right],, left[ begin 0 \ 1 \ 0 \ 1 \ 0 end right] right) \ _ qquad qquad quad X_1 quad quad X_2 quad quad X_3 end , begin mathbb V_2= left( left[ begin 1 \ 0 \ 0 \ 0 \ 1 end right],, left[ begin 1 \ 1 \ 0 \ 1 \ 1 end right],, left[ begin 0 \ 1 \ 1 \ 1 \ 0 end right] right) \ _ quad qquad qquad Y_1 qquad Y_2 quad quad Y_3 end . $$

Решение. 1. Сначала найдем базисы каждого из подпространств: $$dim mathbb V_1=2, mathbb V_1=mathcal L(X_1, X_2) ; dim mathbb V_2=3, mathbb V_2=mathcal L(Y_1, Y_2, Y_3) . $$

2. Произвольный вектор $ Zin mathbb R^5 $, принадлежащий $ mathbb V_1 cap mathbb V_2 $, должен раскладываться по базису каждого из подпространств: $$Z=alpha_1 X_1 + alpha_2 X_2= beta_1 Y_1 + beta_2 Y_2 + beta_3 Y_3 .$$ Для определения неизвестных значений координат составляем систему уравнений $$ begin qquad X_1 X_2 \ qquad <colordownarrow> <colordownarrow> \ left( begin 1 & 1 & -1 & &-1 & & 0 \ -1 & 2 & 0 & & -1 & & -1 \ 1 & 1 & 0 & & 0 & & -1 \ -1 & 2 & 0 & & -1 & & -1 \ 1 & 1 & -1 & & -1 & & 0 end right) \ qquad qquad qquad <coloruparrow> qquad <coloruparrow> qquad quad <coloruparrow> \ quad qquad qquad -Y_1 quad — Y_2 quad -Y_3 end left( begin alpha_1 \ alpha_2 \ beta_1 \ beta_2 \ beta_3 end right)= mathbb O_ $$ и решаем ее по методу Гаусса с нахождением фундаментальной системы решений: $$ left( begin 1 & 1 & -1 & -1 & 0 \ 0 & 3 & -1 & -2 & -1 \ 0 & 0 & 1 & 1 & -1 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 end right) left( begin alpha_1 \ alpha_2 \ beta_1 \ beta_2 \ beta_3 end right)= mathbb O quad Rightarrow qquad mbox qquad begin alpha_1 & alpha_2 & beta_1 & beta_2 & beta_3 \ hline -1/3 & 1/3 & -1 & 1 & 0 \ 1/3 & 2/3 & 1 & 0 & 1 end $$

3. Получившиеся значения координат позволяют выразить базис пересечения — либо через базис подпространства $ mathbb V_1 $ (если использовать полученные значения для $ alpha_1,alpha_2 $), либо через базис подпространства $ mathbb V_2 $ (если использовать $ beta_1,beta_2, beta_3 $). Например, $$ Z_1=-1/3 X_1 + 1/3 X_2 = [0,1,0,1,0]^<^>, $$ $$ Z_2=1/3 X_1 + 2/3 X_2 = [1,1,1,1,1]^<^> . $$

Найти базисы суммы и пересечения подпространств

Решение ☞ ЗДЕСЬ.

Прямая сумма линейных подпространств

Пусть $ mathbb V_1 $ и $ mathbb V_2 $ — подпространства линейного пространства $ mathbb V_ $. Говорят, что $ mathbb V_ $ раскладывается в прямую сумму подпространств $ mathbb V_1 $ и $ mathbb V_2 $ если любой вектор $ Xin mathbb V_ $ может быть представлен в виде $ X=X_1+X_2 $, где $ X_1in mathbb V_1,X_2in mathbb V_2 $ и такое представление единственно. Этот факт записывают: $ mathbb V= mathbb V_1 oplus mathbb V_2 $. Вектор $ X_ $ называется проекцией вектора $ X_ $ на подпространство $ mathbb V_1 $ параллельно подпространству $ mathbb V_ $.

Найти размерность и базис подпространства заданного системой линейных уравнений

Пример. Линейное пространство квадратных матриц порядка $ n_ $ раскладывается в прямую сумму подпространств: подпространства симметричных матриц и подпространства кососимметричных матриц. В самом деле, для матрицы $ A_ $ справедливо разложение

$$A=frac left(A+A^ right) + frac left(A-A^ right) $$ и в правой части первая скобка дает симметричную матрицу, а вторая — кососимметричную. Покажите, что не существует иного разложения матрицы $ A_ $ в сумму симметричной и кососимметричной.

Теорема. Пусть $ mathbb V=mathbb V_1 + mathbb V_2 $. Эта сумма будет прямой тогда и только тогда, когда подпространства $ mathbb V_1 $ и $ mathbb V_2 $ имеют тривиальное пересечение:

$$mathbb V_1 cap mathbb V_2= .$$

Доказательство. Необходимость. Пусть сумма $ mathbb V_1 + mathbb V_2 $ — прямая, но существует вектор $ Xne mathbb O $, принадлежащий $ mathbb V_1 cap mathbb V_2 $. Но тогда и вектор $ (-X) $ принадлежит $ mathbb V_1 cap mathbb V_2 $. Для нулевого вектора $ mathbb O $ получаем два представления в виде суммы проекций на подпространства: $$ mathbb O = mathbb O + mathbb O = X+ (-X) , . $$ Это противоречит понятию прямой суммы.

Достаточность. Если $ mathbb V_1 cap mathbb V_2= $, но существует вектор $ X in mathbb V_1 + mathbb V_2 $, имеющий два различных разложения в сумму проекций $$ X=X_1+X_2 =Y_1+ Y_2 quad npu quad subset mathbb V_1, subset mathbb V_2, $$ то $$ (X_1-Y_1)+(X_2-Y_2) =mathbb O quad Rightarrow quad X_1-Y_1=Y_2-X_2 , , $$ т.е. вектор $ X_1-Y_1 $ принадлежит $ mathbb V_1 cap mathbb V_2 $. Но, по предположению, $ mathbb V_1 cap mathbb V_2= $, следовательно, $ X_1-Y_1=mathbb O $, но тогда и $ Y_2-X_2=mathbb O $. ♦

Сумма $ mathbb V=mathbb V_1 + mathbb V_2 $ будет прямой тогда и только тогда, когда базис $ mathbb V_ $ может быть получен объединением базисов $ mathbb V_ $.

Пример [2]. Доказать, что сумма подпространств

$$mathbb V_1=left( left[ begin 2 \3 \ 11 \ 5 end right] , left[ begin 1 \1 \ 5 \ 2 end right] , left[ begin 0 \1 \ 1 \ 1 end right] right) quad mbox quad mathbb V_2=left( left[ begin 2 \1 \ 3 \ 2 end right] , left[ begin 1 \1 \ 3 \ 4 end right] , left[ begin 5 \2 \ 6 \ 2 end right] right) $$ будет прямой и найти проекции вектора $ Z=[2,0,0,3]^ $ на эти подпространства.

Решение. Базисы $ mathbb V_1 $ и $ mathbb V_2 $ составляют соответственно системы $ $ и $ $, т.е. $ dim , mathbb V_1=dim , mathbb V_2 =2 $. На основании следствия достаточно установить, что объединенная система $ $ л.н.з. Для этого достаточно проверить, что определитель матрицы $$ A=left( begin 1 & 0 & 2 & 1 \ 1 & 1 & 1 & 1 \ 5 & 1 & 3 & 3 \ 2 & 1 & 2 & 4 end right) $$ отличен от нуля. Поскольку это условие выполнено, то сумма $ mathbb V_1 + mathbb V_2 $ — прямая и базис этой суммы состоит из взятых векторов. Для нахождения разложения вектора $ X_ $ по этому базису решаем систему уравнений $$A left[ begin alpha_2 \ alpha_3 \ beta_1 \ beta_2 end right] = Z $$ и получаем единственное решение: $ alpha_2=-1,, alpha_3=-1,, beta_1 =1, , beta_2=1 $. Разложение $ Z=Z_1+Z_2 $ составляют векторы $ Z_1=alpha_2 X_2+alpha_3 X_3 $ и $ Z_2=beta_1 Y_1+beta_2 Y_2 $.

Линейные многообразия

Пусть $ mathbb V_1 $ — линейное подпространство пространства $ mathbb V_ $, а $ X_ $ — произвольный фиксированный вектор из $ mathbb V_ $. Множество $$ mathbb M = X_0+ mathbb V_1 = left $$ называется линейным многообразием (порожденным подпространством $ mathbb V_1 $). Размерностью этого многообразия называется размерность порождающего его подпространства: $ dim mathbb M = dim mathbb V_1 $. В случае $ 1 ☞ ОБЩЕЕ РЕШЕНИЕ: если система совместна, то ее общее решение можно представить как сумму какого-то одного ее решения и общего решения соответствующей однородной системы $ AX= mathbb O $. Таким образом, многообразие решений неоднородной системы $ AX= $ допускает «параметрическое представление»: $$mathbb M=X_0+ (X_1,dots,X_<n->)= $$ $$=left<X_0+t_1 X_1+dots+ t_<n-> X_<n-> mid (t_1,dots, t_<n->) in mathbb R^<n-> right> ; $$ здесь $ X_ $ означает частное решение системы (т.е. $ AX_0= $),

$ <X_1,dots,X_<n->> $ — ФСР для системы $ AX= mathbb O $,

а $ mathfrak r= operatorname A= operatorname [Amid mathcal B] $.

Получаем, следовательно, $ (n-) $-мерную плоскость в $ mathbb R^n $, a в случае $ (n-)=1 $ — прямую $$mathbb M=X_0+tX_1 quad npu t in mathbb R ; $$ в последнем случае вектор $ X_ $ называют направляющим вектором этой прямой.

Некоторые задачи на линейные многообразия ☞ ЗДЕСЬ.

🎥 Видео

3 1 Базис линейного пространстваСкачать

3 1  Базис линейного пространства

Размерность суммы и пересечения подпространствСкачать

Размерность суммы и пересечения подпространств

4.1 Сумма и пересечение подпространств.Скачать

4.1 Сумма и пересечение подпространств.

Базис и размерность. ТемаСкачать

Базис и размерность. Тема

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Базис линейного пространства (02)Скачать

Базис линейного пространства (02)

Базис суммы и пересечения линейных пространствСкачать

Базис суммы и пересечения линейных пространств

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

3.2 Базис и размерность.Скачать

3.2 Базис и размерность.
Поделиться или сохранить к себе: