Найти размерность и базис линейного подпространства заданного системой линейных уравнений онлайн

Примеры решений. Линейные пространства

В этом разделе вы найдете бесплатные решения задач о линейных пространствах по темам: проверка линейности подпространства, базис пространства и подпространства, ортогональное подпространство, размерность.

Видео:Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Решения задач: линейные пространства

Задача 1. Образует ли линейное подпространство пространства $R^4$ множество $V$, заданное по правилу:

Задача 2. Даны векторы $e_1, e_2, e_3, e_4$ и $a$ в стандартном базисе пространства $R^4$.
Требуется:
а) убедиться, что векторы $e_1, e_2, e_3, e_4$ образуют базис пространства $R^4$;
б) найти разложение вектора $a$ по этому базису;
в) найти угол между векторами $e_1$ и $e_2$.

Задача 3.Найти ортогональный базис подпространства $L$, заданного системой уравнений, и базис подпространства $L^$

Задача 4. Для каждого из следующих множеств геометрических векторов определить, будет ли это множество линейным подпространством пространства $V_3$ :
1) радиус-векторы точек данной плоскости;
2) векторы, образующие с данным ненулевым вектором $overline$ угол $alpha$;
3) множество векторов, удовлетворяющих условию $|overline|=1$ .

Задача 5. Пусть $L$ — множество многочленов степени не выше 2, удовлетворяющих условию $p(1)+p'(1)+p»(1)=0$. Доказать, что $L$ — линейное подпространство в пространстве $P_2$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Задача 6. Образуют ли многочлены $p_1(x)=x^3+x^2-1$, $p_2(x)=x^2-2x$, $p_3(x)=x^3+x$, $p_4(x)=x^2-3$ базис в пространстве $P_3$?

Задача 7. Доказать, что матрицы вида $$ begin 2a & a+3b-2c\ b & 5c\ end $$ образуют линейное подпространство в пространстве матриц $M_$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.

Видео:Базисные решения систем линейных уравнений (03)Скачать

Базисные решения систем линейных уравнений (03)

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Видео:Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Проверить образуют ли вектора базис онлайн калькулятор

Базисом в -мерном пространстве называется упорядоченная система из линейно-независимых векторов.

Введём также некоторые дополнительные понятия, необходимые для дальнейшего изложения.

, где &#x2212 некоторые числа и называется линейной комбинацией векторов .

Если существуют такие числа из которых хотя бы одно не равно нулю (например ) и при этом выполняется равенство:

, то система векторов &#x2212 является линейно-зависимой.

Если же указанное равенство выполняется лишь при условии, что все числа , тогда система векторов &#x2212 является линейно-независимой.

Базис может образовывать только линейно-независимая система векторов. Понятие линейной зависимости/независимости системы векторов, тесно связано с понятием ранга матрицы .

Наш онлайн калькулятор позволяет проверить образует ли система векторов базис. При этом калькулятор выдаёт подробное решение на русском языке.

📹 Видео

Базис линейного пространства. Матрица переходаСкачать

Базис линейного пространства. Матрица перехода

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Базис линейного пространства (02)Скачать

Базис линейного пространства (02)

3 1 Базис линейного пространстваСкачать

3 1  Базис линейного пространства

Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Базисные решения систем линейных уравнений (01)Скачать

Базисные решения систем линейных уравнений (01)

Базисы суммы и пересечения линейных подпространствСкачать

Базисы суммы и пересечения линейных подпространств

Базис суммы и пересечения линейных пространствСкачать

Базис суммы и пересечения линейных пространств

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Базис и размерность. ТемаСкачать

Базис и размерность. Тема

Размерность суммы и пересечения подпространствСкачать

Размерность суммы и пересечения подпространств

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Базисные решения систем линейных уравнений (02)Скачать

Базисные решения систем линейных уравнений (02)

3 2 Теорема о базисе линейного пространства РазмерностьСкачать

3 2  Теорема о базисе линейного пространства  Размерность

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений
Поделиться или сохранить к себе: