В этом разделе вы найдете бесплатные решения задач о линейных пространствах по темам: проверка линейности подпространства, базис пространства и подпространства, ортогональное подпространство, размерность.
Видео:Линейная оболочка. Базис и размерностьСкачать
Решения задач: линейные пространства
Задача 1. Образует ли линейное подпространство пространства $R^4$ множество $V$, заданное по правилу:
Задача 2. Даны векторы $e_1, e_2, e_3, e_4$ и $a$ в стандартном базисе пространства $R^4$.
Требуется:
а) убедиться, что векторы $e_1, e_2, e_3, e_4$ образуют базис пространства $R^4$;
б) найти разложение вектора $a$ по этому базису;
в) найти угол между векторами $e_1$ и $e_2$.
Задача 3.Найти ортогональный базис подпространства $L$, заданного системой уравнений, и базис подпространства $L^$
Задача 4. Для каждого из следующих множеств геометрических векторов определить, будет ли это множество линейным подпространством пространства $V_3$ :
1) радиус-векторы точек данной плоскости;
2) векторы, образующие с данным ненулевым вектором $overline$ угол $alpha$;
3) множество векторов, удовлетворяющих условию $|overline|=1$ .
Задача 5. Пусть $L$ — множество многочленов степени не выше 2, удовлетворяющих условию $p(1)+p'(1)+p»(1)=0$. Доказать, что $L$ — линейное подпространство в пространстве $P_2$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.
Задача 6. Образуют ли многочлены $p_1(x)=x^3+x^2-1$, $p_2(x)=x^2-2x$, $p_3(x)=x^3+x$, $p_4(x)=x^2-3$ базис в пространстве $P_3$?
Задача 7. Доказать, что матрицы вида $$ begin 2a & a+3b-2c\ b & 5c\ end $$ образуют линейное подпространство в пространстве матриц $M_$. Найти его базис и размерность. Дополнить базис подпространства до базиса всего пространства.
Видео:Базисные решения систем линейных уравнений (03)Скачать
Решение систем линейных уравнений
Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.
Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).
Видео:Базис линейного пространства (01)Скачать
Проверить образуют ли вектора базис онлайн калькулятор
Базисом в -мерном пространстве называется упорядоченная система из линейно-независимых векторов.
Введём также некоторые дополнительные понятия, необходимые для дальнейшего изложения.
, где − некоторые числа и называется линейной комбинацией векторов .
Если существуют такие числа из которых хотя бы одно не равно нулю (например ) и при этом выполняется равенство:
, то система векторов − является линейно-зависимой.
Если же указанное равенство выполняется лишь при условии, что все числа , тогда система векторов − является линейно-независимой.
Базис может образовывать только линейно-независимая система векторов. Понятие линейной зависимости/независимости системы векторов, тесно связано с понятием ранга матрицы .
Наш онлайн калькулятор позволяет проверить образует ли система векторов базис. При этом калькулятор выдаёт подробное решение на русском языке.
📹 Видео
Базис линейного пространства. Матрица переходаСкачать
Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать
Как разложить вектор по базису - bezbotvyСкачать
Базис линейного пространства (02)Скачать
3 1 Базис линейного пространстваСкачать
Образуют ли данные векторы базисСкачать
Высшая математика. Линейные пространства. Векторы. БазисСкачать
Базисные решения систем линейных уравнений (01)Скачать
Базисы суммы и пересечения линейных подпространствСкачать
Базис суммы и пересечения линейных пространствСкачать
Система линейных уравнений. Общее решение. Метод ГауссаСкачать
Базис и размерность. ТемаСкачать
Размерность суммы и пересечения подпространствСкачать
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Базисные решения систем линейных уравнений (02)Скачать
3 2 Теорема о базисе линейного пространства РазмерностьСкачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать