- Формула для вычисления расстояния от точки до прямой в пространстве
- Вывод формулы вычисления расстояния от точки до прямой в пространстве
- Примеры задач на вычисление расстояния от точки до прямой в пространстве
- Математический портал
- Nav view search
- Navigation
- Search
- Прямая в пространстве, всевозможные уравнения.
- Расстояние от точки до прямой на плоскости и в пространстве: определение и примеры нахождения
- Расстояние от точки до прямой – определение
- Расстояние от точки до прямой на плоскости – теория, примеры, решения
- Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости
- Расстояние от точки до прямой в пространстве – теория, примеры, решения
- Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве
- 📹 Видео
Видео:Лекция 24. Расстояние от точки до прямой на плоскости.Скачать
Формула для вычисления расстояния от точки до прямой в пространстве
Если s = — направляющий вектор прямой l , M1( x 1, y 1, z 1) — точка лежащей на прямой, тогда расстояние от точки M0( x 0, y 0, z 0) до прямой l можно найти, используя формулу
d = | | M0M1 × s | |
| s | |
Видео:18. Расстояние от точки до прямой в пространствеСкачать
Вывод формулы вычисления расстояния от точки до прямой в пространстве
Если задано уравнение прямой l то несложно найти s = — направляющий вектор прямой и M1( x 1, y 1, z 1) — координаты точки лежащей на этой прямой. Из свойств векторного произведения известно, что модуль векторного произведения векторов равен площади параллелограмма построенного на этих векторах
С другой стороны площадь параллелограмма равна произведению его стороны на высоту проведенную к этой стороне
В нашем случае высота будет равна расстоянию от точки до плоскости d , а сторона параллелограмма равна модулю направляющего вектора s .
Приравняв площади несложно получить формулу расстояния от точки до прямой.
Видео:Расстояние от точки до прямойСкачать
Примеры задач на вычисление расстояния от точки до прямой в пространстве
x — 3 | = | y — 1 | = | z + 1 |
2 | 1 | 2 |
Из уравнения прямой получим:
s = — направляющий вектор прямой;
M1(3; 1; -1) — точка лежащая на прямой.
M0M1 × s = | i | j | k | = |
3 | -1 | -4 | ||
2 | 1 | 2 |
d = | M0M1 × s | | s | = √ 2 2 + (-14) 2 + 5 2 √ 2 2 + 1 2 + 2 2 = √ 225 √ 9 = 15 3 = 5
Ответ: расстояние от точки до прямой равно 5.
Видео:Расстояние от точки до плоскости / Вывод формулыСкачать
Математический портал
Видео:Определить расстояние от точки С до прямой АВ. Метод прямоугольного треугольника.Скачать
Nav view search
Navigation
Search
- Вы здесь:
- Home
- Аналитическая геометрия
- Высшая математика.
- Аналитическая геометрия.
- Прямая в пространстве, всевозможные уравнения, взаимное расположение прямых в пространстве, расстояние от точки до прямой в пространстве.
Видео:7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Прямая в пространстве, всевозможные уравнения.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Существуют такие формы записи уравнения прямой в пространстве:
1) $left<beginA_1x+B_1y+C_1z+D_1=0quad (P_1)\ A_2x+B_2y+C_2z+D_2=0quad (P_2)endright. — $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$
2) $frac=frac=frac
-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$ Вектор $overline S$ является направляющим вектором прямой $L.$
3) $frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$
4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:
Расположение двух прямых в пространстве.
Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $overline_1paralleloverline_2Leftrightarrow$ $frac=frac=frac
.$
Условие перпендикулярности двух прямых: $L_1perp L_2Leftrightarrow$ $overline_1perpoverline_2Leftrightarrow$ $cdot+cdot+p_1cdot p_2=0.$
Угол между прямыми:
Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.
Пусть прямая $L$ задана уравнением $frac=frac=frac
,$ следовательно $overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=frac<|[overline, overline S]|>.$$
Примеры.
2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:
а) вектору $q(2, -3, 5);$
е) прямой $x=-2+t, y=2t, z=1-fract.$
Решение.
а) Воспользуемся формулой (2) уравнения прямой в пространстве:
$frac=frac=frac
-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$
По условию $M_0(2, 0, -3)$ и $overline=q(2,-3,5).$
б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $frac=frac=frac$ имеет координаты $overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(5, 2, -1)$ как и в пункте а):
в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$
д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой
$left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ можно найти как векторное произведение нормалей заданных плоскостей.
Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$
для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$
Находим векторное произведение:
Таким образом, направляющий вектор прямой $left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ имеет координаты $overline S (-4, 8, 10).$
Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(-4, 8, 10):$
е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-fract.$ Для этого запишем уравнение этой прямой в каноническом виде:
Отсюда находим направляющий вектор $overline Sleft(1, 2, -fracright).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $overline S_1(2, 4, -1).$
Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(2, 4, -1):$
2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$
Решение.
Воспользуемся формулой (3) уравнения прямой в пространстве:
$frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$
Подставляем заданные точки:
2.204. Найти расстояние между параллельными прямыми
Решение.
Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=frac<|[overline, overline S]|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 — $произвольная точка прямой $L_2,$ $overline S -$ направляющий вектор прямой $L_2.$
Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)in L_1,$ $M_2=(7, 1, 3)in L_2,$ $overline S=(3, 4, 2). $
Отсюда находим $overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$
Ответ: 3.
2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$
Решение.
Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.
Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:
Таким образом, $M=(-14, -frac, 0)$
Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:
Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$
для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$
Находим векторное произведение:
Таким образом, направляющий вектор прямой $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$
имеет координаты $overline S (-2, -1, 2).$
Теперь можно воспользоваться формулой $$d(A, L)=frac<|[overline, overline S]|>.$$
$overline=left(2-(-14),3-left(-fracright),-1-0right)=left(16, 15frac, -1right)$
Ответ: $d(A, L)=15.$
2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: frac=frac=frac.$
Решение.
Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$
$P: 3x-2y-3z-7=0Rightarrow overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $overline N(3, -2, -3).$
$P_1: 3x-9-2y-4-3z-12=0 Rightarrow$
Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:
Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$
Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:
Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$
Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$— это и будет искомая прямая. Воспользуемся формулой ( 3) $frac=frac=frac :$
2.199.
б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$
б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $left<beginx=3t+5,\ y=2t,\z=-2t-25. endright.$
2.206. Доказать, что прямые $L_1: left<begin2x+2y-z-10=0,\ x-y-z-22=0, endright.$ и $L_2: frac=frac=frac.$ параллельны и найти расстояние $rho(L_1, L_2)$
2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $frac=frac=frac$ и $frac=frac=frac.$
2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $frac=frac=frac.$
Видео:§15 Расстояние от точки до прямойСкачать
Расстояние от точки до прямой на плоскости и в пространстве: определение и примеры нахождения
Данная статья рассказывает о теме «расстояния от точки до прямой», рассматриваются определения расстояния от точки к прямой с иллюстрированными примерами методом координат. Каждый блок теории в конце имеет показанные примеры решения подобных задач.
Видео:7. Расстояние от точки до плоскости (вывод формулы примеры)Скачать
Расстояние от точки до прямой – определение
Расстояние от точки до прямой находится через определение расстояния от точки до точки. Рассмотрим подробней.
Пусть имеется прямая a и точка М 1 , не принадлежащая заданной прямой. Через нее проведем прямую b , расположенную перпендикулярно относительно прямой a . Точка пересечения прямых возьмем за Н 1 . Получим, что М 1 Н 1 является перпендикуляром, который опустили из точки М 1 к прямой a .
Расстоянием от точки М 1 к прямой a называется расстояние между точками М 1 и Н 1 .
Бывают записи определения с фигурированием длины перпендикуляра.
Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.
Определения эквивалентны. Рассмотрим рисунок, приведенный ниже.
Известно, что расстояние от точки до прямой является наименьшим из всех возможных. Рассмотрим это на примере.
Если взять точку Q , лежащую на прямой a , не совпадающую с точкой М 1 , тогда получим, что отрезок М 1 Q называется наклонной, опущенной из М 1 к прямой a . Необходимо обозначить, что перпендикуляр из точки М 1 является меньше, чем любая другая наклонная, проведенная из точки к прямой.
Чтобы доказать это, рассмотрим треугольник М 1 Q 1 Н 1 , где М 1 Q 1 является гипотенузой. Известно, что ее длина всегда больше длины любого из катетов. Значим, имеем, что M 1 H 1 M 1 Q . Рассмотрим рисунок, приведенный ниже.
Видео:Расстояние от точки до прямой (метод координат)Скачать
Расстояние от точки до прямой на плоскости – теория, примеры, решения
Исходные данные для нахождения от точки до прямой позволяют использовать несколько методов решения: через теорему Пифагора, определения синуса, косинуса, тангенса угла и другими. Большинство заданий такого типа решают в школе на уроках геометрии.
Когда при нахождении расстояния от точки до прямой можно ввести прямоугольную систему координат, то применяют метод координат. В данном пункте рассмотрим основных два метода нахождения искомого расстояния от заданной точки.
Первый способ подразумевает поиск расстояния как перпендикуляра, проведенного из М 1 к прямой a . Во втором способе используется нормальное уравнение прямой а для нахождения искомого расстояния.
Если на плоскости имеется точка с координатами M 1 ( x 1 , y 1 ) , расположенная в прямоугольной системе координат, прямая a , а необходимо найти расстояние M 1 H 1 , можно произвести вычисление двумя способами. Рассмотрим их.
Если имеются координаты точки H 1 , равные x 2 , y 2 , тогда расстояние от точки до прямой вычисляется по координатам из формулы M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 .
Теперь перейдем к нахождению координат точки Н 1 .
Известно, что прямая линия в О х у соответствует уравнению прямой на плоскости. Возьмем способ задания прямой a через написание общего уравнения прямой или уравнения с угловым коэффициентом. Составляем уравнение прямой, которая проходит через точку М 1 перпендикулярно заданной прямой a . Прямую обозначим буковой b . Н 1 является точкой пересечения прямых a и b , значит для определения координат необходимо воспользоваться статьей, в которой идет речь о координатах точек пересечения двух прямых.
Видно, что алгоритм нахождения расстояния от заданной точки M 1 ( x 1 , y 1 ) до прямой a проводится согласно пунктам:
- нахождение общего уравнения прямой a , имеющее вид A 1 x + B 1 y + C 1 = 0 ,или уравнение с угловым коэффициентом, имеющее вид y = k 1 x + b 1 ;
- получение общего уравнения прямой b , имеющее вид A 2 x + B 2 y + C 2 = 0 или уравнение с угловым коэффициентом y = k 2 x + b 2 , если прямая b пересекает точку М 1 и является перпендикулярной к заданной прямой a ;
- определение координат x 2 , y 2 точки Н 1 , являющейся точкой пересечения a и b , для этого производится решение системы линейных уравнений A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 или y = k 1 x + b 1 y = k 2 x + b 2 ;
- вычисление искомого расстояния от точки до прямой, используя формулу M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 .
Теорема способна помочь ответить на вопрос о нахождении расстояния от заданной точки до заданной прямой на плоскости.
Прямоугольная система координат имеет О х у имеет точку M 1 ( x 1 , y 1 ) , из которой проведена прямая а к плоскости, задаваемая нормальным уравнением плоскости, имеющее вид cos α · x + cos β · y — p = 0 , равно по модулю значению, получаемому в левой части нормального уравнения прямой, вычисляемому при x = x 1 , y = y 1 , значит, что M 1 H 1 = cos α · x 1 + cos β · y 1 — p .
Прямой а соответствует нормальное уравнение плоскости, имеющее вид cos α · x + cos β · y — p = 0 , тогда n → = ( cos α , cos β ) считается нормальным вектором прямой a при расстоянии от начала координат до прямой a с p единицами. Необходимо изобразить все данные на рисунке, добавить точку с координатами M 1 ( x 1 , y 1 ) , где радиус-вектор точки М 1 — O M 1 → = ( x 1 , y 1 ) . Необходимо провести прямую от точки до прямой, которое обозначим M 1 H 1 . Необходимо показать проекции М 2 и Н 2 точек М 1 и Н 2 на прямую, проходящую через точку O с направляющим вектором вида n → = ( cos α , cos β ) , а числовую проекцию вектора обозначим как O M 1 → = ( x 1 , y 1 ) к направлению n → = ( cos α , cos β ) как n p n → O M 1 → .
Вариации зависят от расположения самой точки М 1 . Рассмотрим на рисунке, приведенном ниже.
Результаты фиксируем при помощи формулы M 1 H 1 = n p n → O M → 1 — p . После чего приводим равенство к такому виду M 1 H 1 = cos α · x 1 + cos β · y 1 — p для того, чтобы получить n p n → O M → 1 = cos α · x 1 + cos β · y 1 .
Скалярное произведение векторов в результате дает преобразованную формулу вида n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , которая является произведением в координатной форме вида n → , O M 1 → = cos α · x 1 + cos β · y 1 . Значит, получаем, что n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Отсюда следует, что M 1 H 1 = n p n → O M 1 → — p = cos α · x 1 + cos β · y 1 — p . Теорема доказана.
Получаем, что для нахождения расстояния от точки M 1 ( x 1 , y 1 ) к прямой a на плоскости необходимо выполнить несколько действий:
- получение нормального уравнения прямой a cos α · x + cos β · y — p = 0 , при условии, что его нет в задании;
- вычисление выражения cos α · x 1 + cos β · y 1 — p , где полученное значение принимает M 1 H 1 .
Видео:Расстояние от точки до прямой в пространствеСкачать
Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости
Применим данные методы на решении задач с нахождением расстояния от точки до плоскости.
Найти расстояние от точки с координатами M 1 ( — 1 , 2 ) к прямой 4 x — 3 y + 35 = 0 .
Применим первый способ для решения.
Для этого необходимо найти общее уравнение прямой b , которая проходит через заданную точку M 1 ( — 1 , 2 ) , перпендикулярно прямой 4 x — 3 y + 35 = 0 . Из условия видно, что прямая b является перпендикулярной прямой a , тогда ее направляющий вектор имеет координаты, равные ( 4 , — 3 ) . Таким образом имеем возможность записать каноническое уравнение прямой b на плоскости, так как имеются координаты точки М 1 , принадлежит прямой b . Определим координаты направляющего вектора прямой b . Получим, что x — ( — 1 ) 4 = y — 2 — 3 ⇔ x + 1 4 = y — 2 — 3 . Полученное каноническое уравнение необходимо преобразовать к общему. Тогда получаем, что
x + 1 4 = y — 2 — 3 ⇔ — 3 · ( x + 1 ) = 4 · ( y — 2 ) ⇔ 3 x + 4 y — 5 = 0
Произведем нахождение координат точек пересечения прямых, которое примем за обозначение Н 1 . Преобразования выглядят таким образом:
4 x — 3 y + 35 = 0 3 x + 4 y — 5 = 0 ⇔ x = 3 4 y — 35 4 3 x + 4 y — 5 = 0 ⇔ x = 3 4 y — 35 4 3 · 3 4 y — 35 4 + 4 y — 5 = 0 ⇔ ⇔ x = 3 4 y — 35 4 y = 5 ⇔ x = 3 4 · 5 — 35 4 y = 5 ⇔ x = — 5 y = 5
Из выше написанного имеем, что координаты точки Н 1 равны ( — 5 ; 5 ) .
Необходимо вычислить расстояние от точки М 1 к прямой a . Имеем, что координаты точек M 1 ( — 1 , 2 ) и H 1 ( — 5 , 5 ) , тогда подставляем в формулу для нахождения расстояния и получаем, что
M 1 H 1 = ( — 5 — ( — 1 ) 2 + ( 5 — 2 ) 2 = 25 = 5
Второй способ решения.
Для того, чтобы решить другим способом, необходимо получить нормальное уравнение прямой. Вычисляем значение нормирующего множителя и умножаем обе части уравнения 4 x — 3 y + 35 = 0 . Отсюда получим, что нормирующий множитель равен — 1 4 2 + ( — 3 ) 2 = — 1 5 , а нормальное уравнение будет вида — 1 5 · 4 x — 3 y + 35 = — 1 5 · 0 ⇔ — 4 5 x + 3 5 y — 7 = 0 .
По алгоритму вычисления необходимо получить нормальное уравнение прямой и вычислить его со значениями x = — 1 , y = 2 . Тогда получаем, что
— 4 5 · — 1 + 3 5 · 2 — 7 = — 5
Отсюда получаем, что расстояние от точки M 1 ( — 1 , 2 ) к заданной прямой 4 x — 3 y + 35 = 0 имеет значение — 5 = 5 .
Видно, что в данном методе важно использование нормального уравнения прямой, так как такой способ является наиболее коротким. Но первый метод удобен тем, что последователен и логичен, хотя имеет больше пунктов вычисления.
На плоскости имеется прямоугольная система координат О х у с точкой M 1 ( 8 , 0 ) и прямой y = 1 2 x + 1 . Найти расстояние от заданной точки до прямой.
Решение первым способом подразумевает приведение заданного уравнения с угловым коэффициентом к уравнению общего вида. Для упрощения можно сделать иначе.
Если произведение угловых коэффициентов перпендикулярных прямых имеют значение — 1 , значит угловой коэффициент прямой перпендикулярной заданной y = 1 2 x + 1 имеет значение 2 . Теперь получим уравнение прямой, проходящее через точку с координатами M 1 ( 8 , 0 ) . Имеем, что y — 0 = — 2 · ( x — 8 ) ⇔ y = — 2 x + 16 .
Переходим к нахождению координат точки Н 1 , то есть точкам пересечения y = — 2 x + 16 и y = 1 2 x + 1 . Составляем систему уравнений и получаем:
y = 1 2 x + 1 y = — 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = — 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 ( 6 , 4 )
Отсюда следует, что расстояние от точки с координатами M 1 ( 8 , 0 ) к прямой y = 1 2 x + 1 равно расстоянию от точки начала и точки конца с координатами M 1 ( 8 , 0 ) и H 1 ( 6 , 4 ) . Вычислим и получим, что M 1 H 1 = 6 — 8 2 + ( 4 — 0 ) 2 20 = 2 5 .
Решение вторым способом заключается в переходе от уравнения с коэффициентом к нормальному его виду. То есть получим y = 1 2 x + 1 ⇔ 1 2 x — y + 1 = 0 , тогда значение нормирующего множителя будет — 1 1 2 2 + ( — 1 ) 2 = — 2 5 . Отсюда следует, что нормальное уравнение прямой принимает вид — 2 5 · 1 2 x — y + 1 = — 2 5 · 0 ⇔ — 1 5 x + 2 5 y — 2 5 = 0 . Произведем вычисление от точки M 1 8 , 0 к прямой вида — 1 5 x + 2 5 y — 2 5 = 0 . Получаем:
M 1 H 1 = — 1 5 · 8 + 2 5 · 0 — 2 5 = — 10 5 = 2 5
Необходимо вычислить расстояние от точки с координатами M 1 ( — 2 , 4 ) к прямым 2 x — 3 = 0 и y + 1 = 0 .
Получаем уравнение нормального вида прямой 2 x — 3 = 0 :
2 x — 3 = 0 ⇔ 1 2 · 2 x — 3 = 1 2 · 0 ⇔ x — 3 2 = 0
После чего переходим к вычислению расстояния от точки M 1 — 2 , 4 к прямой x — 3 2 = 0 . Получаем:
M 1 H 1 = — 2 — 3 2 = 3 1 2
Уравнение прямой y + 1 = 0 имеет нормирующий множитель со значением равным -1. Это означает, что уравнение примет вид — y — 1 = 0 . Переходим к вычислению расстояния от точки M 1 ( — 2 , 4 ) к прямой — y — 1 = 0 . Получим, что оно равняется — 4 — 1 = 5 .
Ответ: 3 1 2 и 5 .
Подробно рассмотрим нахождение расстояния от заданной точки плоскости к координатным осям О х и О у .
В прямоугольной системе координат у оси О у имеется уравнение прямой, которое является неполным имеет вида х = 0 , а О х — y = 0 . Уравнения являются нормальными для осей координат, тогда необходимо найти расстояние от точки с координатами M 1 x 1 , y 1 до прямых. Это производится, исходя из формул M 1 H 1 = x 1 и M 1 H 1 = y 1 . Рассмотрим на рисунке, приведенном ниже.
Найти расстояние от точки M 1 ( 6 , — 7 ) до координатных прямых, расположенных в плоскости О х у .
Так как уравнение у = 0 относится к прямой О х , можно найти расстояние от M 1 с заданными координатами, до этой прямой, используя формулу. Получаем, что 6 = 6 .
Так как уравнение х = 0 относится к прямой О у , то можно найти расстояние от М 1 к этой прямой по формуле. Тогда получим, что — 7 = 7 .
Ответ: расстояние от М 1 к О х имеет значение 6 , а от М 1 к О у имеет значение 7 .
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Расстояние от точки до прямой в пространстве – теория, примеры, решения
Когда в трехмерном пространстве имеем точку с координатами M 1 ( x 1 , y 1 , z 1 ) , необходимо найти расстояние от точки A до прямой a .
Рассмотрим два способа, которые позволяют производить вычисление расстояние от точки до прямой a , расположенной в пространстве. Первый случай рассматривает расстояние от точки М 1 к прямой, где точка на прямой называется Н 1 и является основанием перпендикуляра, проведенного из точки М 1 на прямую a . Второй случай говорит о том, что точки этой плоскости необходимо искать в качестве высоты параллелограмма.
Из определения имеем, что расстояние от точки М 1 , расположенной на прямой а, является длиной перпендикуляра М 1 Н 1 , тогда получим, что при найденных координатах точки Н 1 , тогда найдем расстояние между M 1 ( x 1 , y 1 , z 1 ) и H 1 ( x 1 , y 1 , z 1 ) , исходя из формулы M 1 H 1 = x 2 — x 1 2 + y 2 — y 1 2 + z 2 — z 1 2 .
Получаем, что все решение идет к тому, чтобы найти координаты основания перпендикуляра, проведенного из М 1 на прямую a . Это производится следующим образом: Н 1 является точкой, где пересекаются прямая a с плоскостью, которая проходит через заданную точку.
Значит, алгоритм определения расстояния от точки M 1 ( x 1 , y 1 , z 1 ) к прямой a пространства подразумевает несколько пунктов:
- составление уравнение плоскости χ в качестве уравнения плоскости, проходящего через заданную точку, находящуюся перпендикулярно прямой;
- определение координат ( x 2 , y 2 , z 2 ) , принадлежавших точке Н 1 , которая является точкой пересечения прямой a и плоскости χ ;
- вычисление расстояния от точки до прямой при помощи формулы M 1 H 1 = x 2 — x 1 2 + y 2 — y 1 2 + z 2 — z 1 2 .
Из условия имеем прямую a , тогда можем определить направляющий вектор a → = a x , a y , a z с координатами x 3 , y 3 , z 3 и определенной точки М 3 ,принадлежащей прямой a . При наличии координат точек M 1 ( x 1 , y 1 ) и M 3 x 3 , y 3 , z 3 можно произвести вычисление M 3 M 1 → :
M 3 M 1 → = ( x 1 — x 3 , y 1 — y 3 , z 1 — z 3 )
Следует отложить векторы a → = a x , a y , a z и M 3 M 1 → = x 1 — x 3 , y 1 — y 3 , z 1 — z 3 из точки М 3 , соединим и получим фигуру параллелограмма. М 1 Н 1 является высотой параллелограмма.
Рассмотрим на рисунке, приведенном ниже.
Имеем, что высота М 1 Н 1 является искомым расстоянием, тогда необходимо найти его по формуле. То есть ищем M 1 H 1 .
Обозначим площадь параллелограмма за букву S , находится по формуле, используя вектор a → = ( a x , a y , a z ) и M 3 M 1 → = x 1 — x 3 . y 1 — y 3 , z 1 — z 3 . Формула площади имеет вид S = a → × M 3 M 1 → . Также площадь фигуры равняется произведению длин его сторон на высоту, получим, что S = a → · M 1 H 1 с a → = a x 2 + a y 2 + a z 2 , являющимся длиной вектора a → = ( a x , a y , a z ) , являющейся равной стороне параллелограмма. Значит, M 1 H 1 является расстоянием от точки до прямой. Ее нахождение производится по формуле M 1 H 1 = a → × M 3 M 1 → a → .
Для нахождения расстояния от точки с координатами M 1 ( x 1 , y 1 , z 1 ) до прямой a в пространстве, необходимо выполнить несколько пунктов алгоритма:
- определение направляющего вектора прямой a — a → = ( a x , a y , a z ) ;
- вычисление длины направляющего вектора a → = a x 2 + a y 2 + a z 2 ;
- получение координат x 3 , y 3 , z 3 , принадлежавших точке М3, находящейся на прямой а;
- вычисление координат вектора M 3 M 1 → ;
- нахождение векторного произведения векторов a → ( a x , a y , a z ) и M 3 M 1 → = x 1 — x 3 , y 1 — y 3 , z 1 — z 3 в качестве a → × M 3 M 1 → = i → j → k → a x a y a z x 1 — x 3 y 1 — y 3 z 1 — z 3 для получения длины по формуле a → × M 3 M 1 → ;
- вычисление расстояния от точки до прямой M 1 H 1 = a → × M 3 M 1 → a → .
Видео:Расстояние от точки до прямой | Вывод формулы через Подобие и ПифагораСкачать
Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве
Найти расстояние от точки с координатами M 1 2 , — 4 , — 1 к прямой x + 1 2 = y — 1 = z + 5 5 .
Первый способ начинается с записи уравнения плоскости χ , проходящей через М 1 и перпендикулярно заданной точке. Получаем выражение вида:
2 · ( x — 2 ) — 1 · ( y — ( — 4 ) ) + 5 · ( z — ( — 1 ) ) = 0 ⇔ 2 x — y + 5 z — 3 = 0
Нужно найти координаты точки H 1 , являющейся точкой пересечения с плоскостью χ к заданной по условию прямой. Следует переходить от канонического вида к пересекающемуся. Тогда получаем систему уравнений вида:
x + 1 2 = y — 1 = z + 5 5 ⇔ — 1 · ( x + 1 ) = 2 · y 5 · ( x + 1 ) = 2 · ( z + 5 ) 5 · y = — 1 · ( z + 5 ) ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0
Необходимо вычислить систему x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 2 x — y + 5 z — 3 = 0 ⇔ x + 2 y = — 1 5 x — 2 z = 5 2 x — y + 5 z = 3 по методу Крамера, тогда получаем, что:
∆ = 1 2 0 5 0 — 2 2 — 1 5 = — 60 ∆ x = — 1 2 0 5 0 — 2 3 — 1 5 = — 60 ⇔ x = ∆ x ∆ = — 60 — 60 = 1 ∆ y = 1 — 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 — 60 = — 1 ∆ z = 1 2 — 1 5 0 5 2 — 1 3 = 0 ⇒ z = ∆ z ∆ = 0 — 60 = 0
Отсюда имеем, что H 1 ( 1 , — 1 , 0 ) .
Необходимо рассчитать расстояние между точками с координатами M 1 ( 2 , — 4 , — 1 ) и H 1 ( 1 , — 1 , 0 ) по формуле:
M 1 H 1 = 1 — 2 2 + — 1 — — 4 2 + 0 — — 1 2 = 11
Второй способ необходимо начать с поиска координат в каноническом уравнении. Для этого необходимо обратит внимание на знаменатели дроби. Тогда a → = 2 , — 1 , 5 является направляющим вектором прямой x + 1 2 = y — 1 = z + 5 5 . Необходимо вычислить длину по формуле a → = 2 2 + ( — 1 ) 2 + 5 2 = 30 .
Понятно, что прямая x + 1 2 = y — 1 = z + 5 5 пересекает точку M 3 ( — 1 , 0 , — 5 ) , отсюда имеем, что вектор с началом координат M 3 ( — 1 , 0 , — 5 ) и его концом в точке M 1 2 , — 4 , — 1 является M 3 M 1 → = 3 , — 4 , 4 . Находим векторное произведение a → = ( 2 , — 1 , 5 ) и M 3 M 1 → = ( 3 , — 4 , 4 ) .
Мы получаем выражение вида a → × M 3 M 1 → = i → j → k → 2 — 1 5 3 — 4 4 = — 4 · i → + 15 · j → — 8 · k → + 20 · i → — 8 · j → = 16 · i → + 7 · j → — 5 · k →
получаем, что длина векторного произведения равняется a → × M 3 M 1 → = 16 2 + 7 2 + — 5 2 = 330 .
Имеются все данные для использования формулы вычисления расстояния от точки для прямлой, поэтому применим ее и получим:
M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11
📹 Видео
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Вопрос-ответ с астрономом Владимиром Сурдиным – Самые популярные вопросыСкачать
Видеоурок "Расстояние от точки до прямой"Скачать
Формула расстояния от точки до прямой (на плоскости)Скачать
Прямая на плоскости. Проекция точки на прямуюСкачать
Видеоурок "Расстояние от точки до прямой"Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать