С помощю этого онлайн калькулятора можно найти расстояние между прямыми на плоскости. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми, задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».
- Предупреждение
- Расстояние между прямыми на плоскости − теория, примеры и решения
- 1. Расстояние между прямыми в каноническом виде.
- 2. Расстояние между прямыми в общем виде.
- Расстояние между 2 прямыми в пространстве
- Метод координат для определения расстояния между скрещивающимися прямыми
- Готовые работы на аналогичную тему
- Расстояние между двумя параллельными прямыми: определение и примеры нахождения
- Расстояние между двумя параллельными прямыми: определение
- Нахождение расстояния между параллельными прямыми
- 📺 Видео
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать
Расстояние между прямыми на плоскости − теория, примеры и решения
- Содержание
- 1. Расстояние между прямыми в каноническом виде.
- 2. Расстояние между прямыми в общем виде.
1. Расстояние между прямыми в каноническом виде.
Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:
. | (1) |
, | (2) |
Прямые (1) и (2) могут совпадать, быть паралленьными или пересекаться. Если прямые пересекаются, то понятие расстояния между ними не имеет смысла (не определено). Если прямые совпадают, то расстояние между ними равно нулю. Если же они параллельны, то расстояние между ними можно вычислить следующими методами:
Рассмотрим этот метод подробнее. Каноническое уравнение прямой L3, проходящей через точку M1(x1, y1) имеет следующий вид:
, | (3) |
Для того, чтобы прямая L3 была перпендикулярна прямой L2, направляющие векторы этих прямых должны быть ортогональны, т.е. скалярное произведение этих векторов должен быть равным нулю:
, | (4) |
Так как направляющий вектор прямой не может быть равным нулю, то предположим, что координата m2 вектора q2 отлична от нуля. Тогда в качестве вектора q3 можно взять вектор q3=<m3, p3>=<p2, −m2>. Следовательно, уравнение прямой L3 получит следующий вид:
, | (5) |
Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (2) и (5). Преобразуем эти уравнения сделав перекрестное умножение:
p2(x−x2)=m2(y−y2) |
p3(x−x1)=m3(y−y1) |
Откроем скобки и перенесем налево переменную y:
p2x−m2y=p2x2−m2y2 | (6) |
p3x−m3y=p3x1−m3y1 | (7) |
Запишем (6) и (7) в матричном виде:
, | (8) |
λ1=p2x2−m2y2, | (9) |
λ2=p3x1−m3y1. | (10) |
, | (11) |
Для построения обратной матрицы воспользуемся методом алгебраических дополнений. Сначала вычислим определитель матрицы:
. |
Тогда обратная матрица примет следующий вид:
. | (12) |
Подставляя значение обратной матрицы (12) в (11), получим:
. |
. | (13) |
Расстояние между точками M1 и M3 равно:
. | (14) |
Полученное расстояние d также является расстоянием между прямыми L1 и L2.
Пример 1. Найти расстояние между прямыми L1 и L2:
(15) |
(16) |
Пользуясь формулой (5), построим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:
(17) |
Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (16) и (17). Преобразуем эти уравнения сделав перекрестное умножение:
Сделаем эквивалентные преобразования:
−2x+4y=−10−4 | (18) |
Запишем систему линейных уравнений (18)-(19) в матричном виде:
Вычислим вектор (x, y) T :
Получили точку M3(x3, y3)=(3, −2), которая является точкой пересечения прямых L2 и L3. Расстояние между прямыми L1 и L2 равно расстоянию между точками M1 и M3. Вычислим это расстояние:
Ответ: Расстояние между прямыми L1 и L2 равно d=4.47213595.
Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Уравнение прямой L3 в общем виде, проходящей через точку M1 и перпендикулярной прямой L2 имеет следующий вид:
A3(x−x1)+B3(y−y1)=0. | (20) |
Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>. Подставим координаты вектора q2 в (20):
m2(x−x1)+p2(y−y1)=0. |
(21) |
Приведем уравнение прямой (2) к параметрическому виду:
(22) |
Подставим (22) в (21) и решим относительно t:
(23) |
Мы получили такое значение t, при котором соответствующая точка на прямой L2 удовлетворяет уравнению прямой L3, т.е. находится на этой прямой (является точкой пересечения прямых L2 и L3). Подставляя значение t в (22), получим координаты точки M3(x3, y3). Далее вычисляем расстояние между точками M1 и M3:
(24) |
Пример 2. Найти расстояние между прямыми
(25) |
(26) |
Уравнение прямой L3, проходящей через точку M1 и имеющий нормальный вектор n3=<A3, B3> представляется формулой:
(27) |
Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>=. Подставим координаты вектора q2 и координаты точкиM1 в (27):
После упрощения получим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:
(28) |
Для нахождения точки пересечения прямых L2 и L3 проще всего пользоваться параметрическим уравнением прямой L2. Составим параметрическое уравнение прямой L2:
Выразим переменные x, y через параметр t :
(29) |
Подставим значения x, y из выражения (29) в (28) и решим относительно t:
Подставляя значение t в выражения (29), получим координаты точки M3:
Вычислим расстояние между точками M1 и M3
Ответ. Расстояние между прямыми L1 и L2 равно:
2. Расстояние между прямыми в общем виде.
Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы параллельные прямые L1 и L2:
(30) |
(31′) |
где n1=<A1, B1> и n2=<A2, B2> − направляющие векторы прямых L1 и L2, соответственно. Так как прямые параллельны, то можно один из них умножить на какое-то число так, чтобы нормальные векторы этих прямых совпадали. Пусть A2≠0. Умножим (31′) на A1/A’2. Тогда уравнение (2′) примет следующий вид:
(31) |
Покажем, что расстояние между прямыми L1 и L2 равно:
(32) |
Метод 1. Пусть A1≠0. Тогда точка M1(x1, y1)=M1(−C1/A1, 0) принадлежит прямой L1. Это легко проверить, подставив координаты точки M1 в (30). Построим уравнение прямой, проходящей через точку M1 и перпендикулярной прямой L2:
A3(x−x1)+B3(y−y1)=0 |
Поскольку прямая L3 перпендикулярна прямой L2, то нормальные векторы этих прямых ортогональны. Тогда вместо нормального вектора n3=<A3, B3> прямой L3 можно взять вектор, ортогональный нормальному вектору n2, т.е. вектор n3=<B1, −A1> (так как скалярное произведение этих векторов равно нулю). Тогда имеем:
B1(x−x1)−A1(y−y1)=0 | (33) |
(34) |
Найдем точку пересечения прямых L2 и L3. Для этого решим систему линейных уравнений (31),(34), представляя в матричном виде:
, |
Наконец, расстояние между точками M1 и M3, и следовательно, расстояние между прямыми L1 и L2 равно:
(35) |
Метод 2. Воспользуемся понятием отклонения точки от прямой. Пусть M1(x1, y1) точка, принадлежащая прямой (30), Тогда выполняется равенство
A1x1+B1y1+C1=0. | (35) |
При С2 Пример 3. Найти расстояние между прямыми
L1: x1+2y1−2=0, |
L2: x1+2y1+6=0, |
Ответ. Расстояние между прямыми L1 и L2 равно:
Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать
Расстояние между 2 прямыми в пространстве
Вы будете перенаправлены на Автор24
Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.
Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.
Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.
Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.
Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:
Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.
Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.
Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.
Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать
Метод координат для определения расстояния между скрещивающимися прямыми
Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:
Готовые работы на аналогичную тему
- Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
- Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
- С помощью векторного произведения векторов $overline$ и $overline$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x cdot cos α + y cdot cos β + z cdot cos – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
- Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением: $M_1H_1 = |x_1 cdot cos α + y_1 cdot cos β + z_1 cdot cos – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.
Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями: $d_1$: $frac = frac = frac$
Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве
Для этого воспользуемся следующей формулой:
Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:
$d_1$: $frac = frac = frac$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $overline
$ с координатами $(2; -3; -1)$
$d_2$: $begin frac = frac \ z – 1 = 0 end$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,
а её направляющий вектор — $overline
$ с координатами $(1; -2; 0)$
Теперь найдём вектор $overline$:
Найдём смешанное произведение векторов:
$overline
cdot overline
cdot overline = begin 2& 1 & -3 \ -3& -2 & 1 \ -1 & 0 & 1 \ end = — begin 1 & -3 \ -2 & 1 \ end + begin 2 & 1 \ -3 & -2 \ end = -(1 — 6) + (4 + 3) = 4$
Теперь найдём векторное произведение векторов:
$[|overline
× overline
|] = begin i& j & k \ 2 & -3 & -1 \ 1 & -2 & 0 end = begin -3 & -1 \ -2 & 0 end cdot overline — begin 2 & -1 \ 1 & 0 end cdot overline + begin 2 & -3 \ 1 & -2 end cdot overline$
$[|overline
× overline
|]= -2 overline — overline — overline$
Длина этого векторного произведения составит:
Соответственно, длина между скрещивающимися прямыми составит:
Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.
Расстояние в этом случае для них вычисляется по следующей формуле:
$overline, overline$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.
Радиус-вектор для первой прямой будет $r_1=$, а направляющий вектор $s_1 = $.
Радиус-вектор для второй прямой будет $r_2=$, а направляющий вектор $s_2 = $.
Найдём векторную разность радиус-векторов:
Теперь найдём её произведение с направляющим вектором для первой прямой:
$[overline — overline × overline] = begin i & j & k \ -2 & 0 & 0 \ 4 & 6 & 8 \ end = — 16j – 12k = $
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 09 01 2022
Видео:Расстояние между скрещивающимися прямымиСкачать
Расстояние между двумя параллельными прямыми: определение и примеры нахождения
В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.
Видео:14. Угол между прямыми в пространствеСкачать
Расстояние между двумя параллельными прямыми: определение
Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.
Приведем иллюстрацию для наглядности:
На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .
Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.
Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.
Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .
Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.
Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.
Видео:Расстояние между параллельными прямымиСкачать
Нахождение расстояния между параллельными прямыми
Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.
Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.
Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:
— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;
— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.
Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.
Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:
M 1 H 1 = C 2 — C 1 A 2 + B 2
Выведем эту формулу.
Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .
Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:
A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0
При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:
A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0
И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .
А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.
Разберем теорию на примерах.
Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.
Решение
Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.
Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:
y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0
Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .
При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:
2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13
Ответ: 20 13 .
В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.
Решение
Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:
M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8
Ответ: 8 .
Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.
В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.
Решение
Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .
Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :
M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4
Вычислим векторное произведение векторов :
b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )
Применим формулу расчета расстояния от точки до прямой в пространстве:
M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2
📺 Видео
Угол между прямыми в пространстве. 10 класс.Скачать
✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать
Видеоурок "Угол между прямыми"Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Расстояние между параллельными плоскостямиСкачать
Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).Скачать
Стереометрия ЕГЭ. Метод координат. Часть 5 из 5. Расстояние между прямымиСкачать
Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать
7. Расстояние от точки до плоскости (вывод формулы примеры)Скачать
Расстояние между скрещивающимися прямыми #2Скачать
9. Угол между плоскостями Условия параллельности и перпендикулярности плоскостейСкачать
Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
21. Угол между прямой и плоскостьюСкачать
10 класс, 19 урок, Расстояние от точки до плоскостиСкачать