Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!
- Контакты
- Вычисление площади фигуры, ограниченной параметрически заданной кривой
- Основная формула для вычисления
- Решение задач на вычисление площади фигуры, которая ограничена параметрически заданной кривой
- Как найти площадь поверхности вращения с помощью интеграла
- Вычисление площади поверхности вращения, заданной в прямоугольных координатах
- Вычисление площади поверхности вращения, заданной параметрически
- Вычисление площади поверхности вращения, заданной в полярных координатах
- 📽️ Видео
Контакты
t 0 | 0 | π 8 | π 4 | 3 π 8 | π 2 | 5 π 8 | 3 π 4 | 7 π 8 | π |
x 0 = φ ( t 0 ) | 3 | 2 . 36 | 1 . 06 | 0 . 16 | 0 | — 0 . 16 | — 1 . 06 | — 2 . 36 | — 3 |
y 0 = ψ ( t 0 ) | 0 | 0 . 11 | 0 . 70 | 1 . 57 | 2 | 1 . 57 | 0 . 70 | 0 . 11 | 0 |
t 0 | 9 π 8 | 5 π 4 | 11 π 8 | 3 π 2 | 13 π 8 | 7 π 4 | 15 π 8 | 2 π |
x 0 = φ ( t 0 ) | — 2 . 36 | — 1 . 06 | — 0 . 16 | 0 | 0 . 16 | 1 . 06 | 2 . 36 | 3 |
y 0 = ψ ( t 0 ) | — 0 . 11 | — 0 . 70 | — 1 . 57 | — 2 | — 1 . 57 | — 0 . 70 | — 0 . 11 | 0 |
После этого отметим нужные точки на плоскости и соединим их одной линией.
Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3 :
φ ( α ) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ ( β ) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z
Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ ( t ) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:
— ∫ 0 π 2 2 sin 3 t · 3 cos 3 t ‘ d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · ( 1 — sin 2 t ) d t = 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t
У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n ( x ) = — cos x · sin n — 1 ( x ) n + n — 1 n J n — 2 ( x ) , где J n ( x ) = ∫ sin n x d x .
∫ sin 4 t d t = — cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = — cos t · sin 3 t 4 + 3 4 — cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = — cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = — cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96
Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t = 18 3 π 16 — 15 π 96 = 9 π 16 .
Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .
Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Как найти площадь поверхности вращения с помощью интеграла
Прежде чем перейти к формулам площади поверхности вращения, дадим краткую формулировку самой поверхности вращения. Поверхность вращения, или, что то же самое — поверхность тела вращения — пространственная фигура, образованная вращением отрезка AB кривой вокруг оси Ox (рисунок ниже).
Представим себе криволинейную трапецию, ограниченную сверху упомянутым отрезком кривой. Тело, образованное вращением этой трапеции вокруг то же оси Ox, и есть тело вращения. А площадь поверхности вращения или поверхности тела вращения — это его внешняя оболочка, не считая кругов, образованных вращением вокруг оси прямых x = a и x = b .
Заметим, что тело вращения и соответственно его поверхность могут быть образованы также вращением фигуры не вокруг оси Ox, а вокруг оси Oy.
Видео:Площадь эллипсаСкачать
Вычисление площади поверхности вращения, заданной в прямоугольных координатах
Пусть в прямоугольных координатах на плоскости уравнением y = f(x) задана кривая, вращением которой вокруг координатной оси образовано тело вращения.
Формула для вычисления площади поверхности вращения следующая:
(1).
Пример 1. Найти площадь поверхности параболоида, образованную вращением вокруг оси Ox дуги параболы , соответствующей изменению x от x = 0 до x = a .
Решение. Выразим явно функцию, которая задаёт дугу параболы:
Найдём производную этой функции:
Прежде чем воспользоваться формулу для нахождения площади поверхности вращения, напишем ту часть её подынтегрального выражения, которая представляет собой корень и подставим туда найденную только что производную:
Далее по формуле (1) находим:
Ответ: длина дуги кривой равна
.
Пример 2. Найти площадь поверхности, образуемой вращением вокруг оси Ox астроиды .
Решение. Достаточно вычислить площадь поверхности, получающейся от вращения одной ветви астроиды, расположенной в первой четверти, и умножить её на 2. Из уравнения астроиды выразим явно функцию, которую нам нужно будет подставить в формулу для нахождения площади повержности вращения:
.
Производим интегрирование от 0 до a:
Ответ: площадь поверхности вращения равна .
Видео:Площадь эллипсаСкачать
Вычисление площади поверхности вращения, заданной параметрически
Рассмотрим случай, когда кривая, образующая поверхность вращения, задана параметрическими уравнениями
Тогда площадь поверхности вращения вычисляется по формуле
(2).
Пример 3. Найти площадь поверхности вращения, образованной вращением вокруг оси Oy фигуры, ограниченной циклоидой и прямой y = a . Циклоида задана параметрическими уравнениями
Решение. Найдём точки пересечения циклоиды и прямой. Приравнивая уравнение циклоиды и уравнение прямой y = a , найдём
Из этого следует, что границы интегрирования соответствуют
Теперь можем применить формулу (2). Найдём производные:
Запишем подкоренное выражение в формуле, подставляя найденные производные:
Найдём корень из этого выражения:
.
Подставим найденное в формулу (2):
.
И, наконец, находим
В преобразовании выражений были использованы тригонометрические формулы
Ответ: площадь поверхности вращения равна .
Видео:Площадь эллипсоида + вывод формулы площади поверхности вращенияСкачать
Вычисление площади поверхности вращения, заданной в полярных координатах
Пусть кривая, вращением которой образована поверхность, задана в полярных координатах:
Площадь поверхности вращения вычисляется по формуле:
(3).
Пример 4. Найти площадь поверхности, образованной вращением лемнискаты вокруг полярной оси.
Решение. Действительные значения для ρ получаются при , то есть при (правая ветвь лемнискаты) или при (левая ветвь лемнискаты).
Решение. Дифференциал корня из формулы площади поверхности вращения равен:
В свою очередь произведение функции, которой задана лемниската, на синус угла равно
.
Поэтому площадь поверхности вращения найдём следующим образом:
.
📽️ Видео
Площадь эллипса без интегралаСкачать
Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Площади 10Скачать
Длина эллипса и разложение в ряд для эллиптического интегралаСкачать
ЭллипсСкачать
Площадь фигуры, ограниченной линией, заданной параметрически. Площадь, ограниченная эллипсомСкачать
Площадь пересечения эллипсов и двойной интеграл в полярной системе координатСкачать
Как находить площадь любой фигуры? Геометрия | МатематикаСкачать
Лекция 31.1. Кривые второго порядка. ЭллипсСкачать
Площадь фигуры через двойной интеграл в полярных координатахСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Самый простой способ нахождения площадиСкачать
Астроида: найдем площадь и длину через определенный интегралСкачать