2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение, помогите рассказать об этом сайте:
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Решение дифференциальных уравнений онлайн
Введите дифференциальное уравнение:
Введите задачу Коши (необязательное поле):
Пример: y»+9y’-y=exp(x)
Решение дифференциальных уравнений онлайн
Данный онлайн калькулятор позволяет решать дифференциальные уравнения онлайн. Достаточно в соответствующее поле ввести ваше уравнение, обозначая через апостроф ‘ производную от функции и нажать на кнопку «решить уравнение». И система, реализованная на основе популярного сайта WolframAlpha выдаст подробное решение дифференциального уравнения абсолютно бесплатно. Вы можете также задать задачу Коши, чтобы из всего множества возможных решений выбрать частное соответствующее заданным начальным условиям. Задача Коши вводится в отдельном поле.
Дифференциальное уравнение
По умолчанию в уравнении функция y является функцией от переменной x. Однако вы можете задать своё обозначение переменной, если напишете, например, y(t) в уравнении, то калькулятор автоматически распознает, что y есть функция от переменной t. С помощью калькулятора вы сможете решать дифференциальные уравнения любой сложности и вида: однородные и неоднородные, линейные или нелинейные, первого порядка или второго и более высоких порядков, уравнения с разделяющимися или неразделяющимися переменными и т.д. Решение диф. уравнения даётся в аналитическом виде, имеет подробное описание. Дифференциальные уравнения очень часто встречаются в физике и математике. Без их вычисления невозможно решать многие задачи (особенно в математической физике).
Одним из этапов решения дифференциальных уравнений является интегрирование функций. Есть стандартные методы решений дифференциальных уравнений. Необходимо привести уравнения к виду с разделяющимися переменными y и x и отдельно проинтегрировать разделенные функции. Чтобы это сделать иногда следует провести определенную замену.
📽️ Видео
Лекция №11 по ДУ. Первые интегралы системы ДУ. Бишаев А. М.Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
13. Как решить дифференциальное уравнение первого порядка?Скачать