Найти общее решение системы линейных уравнений в зависимости от параметра

∀ x, y, z
Главная ≫ Форум ≫ Математика ≫ Разбираемся и решаем ≫ Учебные задачи ≫ Найдите общее решение линейной системы в зависимости от значения параметра лямбда

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Найдите общее решение линейной системы в зависимости от значения параметра лямбда

Найти общее решение системы линейных уравнений в зависимости от параметра

Сообщения: 1 🔎
# 12 Мар 2016 11:10:39
Math
Найти общее решение системы линейных уравнений в зависимости от параметра

Найдите общее решение линейной системы в зависимости от значения параметра . При каких значениях система допускает решение с помощью обратной матрицы?

тогда систему можно записать в виде .

Приравнивая к нулю, найдем, что при и .

Если и , то матрица имеет обратную

и решение имеет вид .

Если аккуратно перемножить и упростить, получим .

Случаи и рассматриваются отдельно. Нужно просто подставить и решить как обычную систему линейных уравнений с числовыми коэффициентами без параметров, например, методом гаусса.

Можно не использовать обратную матрицу, а применить метод редукции гаусса к расширенной матрице, учитывая, что и ,

При расширенная матрица

Следовательно решения имеют вид , или в матричном виде:

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Вторая часть.

В первой части мы рассматривали системы линейных алгебраических уравнений (СЛАУ), все коэффициенты которых были известны. В этой же части разберём СЛАУ, среди коэффициентов которых есть некий параметр. Для исследования СЛАУ на совместность станем использовать теорему Кронекера-Капелли. В процессе решения примеров на данной странице будем применять метод Гаусса или же метод Крамера. Сформулируем теорему и следствие из неё ещё раз:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde$.

Следствие из теоремы Кронекера-Капелли

Параметр $n$, использованный выше, равен количеству переменных рассматриваемой СЛАУ.

Исследовать СЛАУ $ left <begin& kx_1+2x_2+x_3=8;\ & -x_1+x_2+2x_3=7;\ & x_2+kx_3=5.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Сделать это можно несколькими путями. Стоит учесть, что в данном примере нам требуется не только исследовать систему на совместность, но и указать её решения. Мне кажется наиболее удобным в таких задачах применять метод Гаусса, однако это вовсе не является обязательным. Для разнообразия данный пример решим методом Гаусса, а следующий – методом Крамера. Итак, запишем и начнём преобразовывать расширенную матрицу системы. При записи расширенной матрицы системы поменяем местами первую и вторую строки. Это нужно для того, чтобы первым элементом первой строки стало число -1.

$$ left(begin -1 & 1 &2 &7 \ k & 2 & 1 & 8\ 0 & 1 & k & 5 end right) begin phantom \ r_2+kcdot\ phantomendrightarrow left(begin -1 & 1 &2 &7 \ 0 & 2+k & 1+2k & 8+7k\ 0 & 1 & k & 5 end right)rightarrowleft|begin&text\&textendright|rightarrow \ rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 2+k & 1+2k & 8+7k end right) begin phantom\phantom\r_3-(2+k)cdotend rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. Напомню, что до черты расположена преобразованная матрица матрица системы: $left(begin-1 & 1 &2\0 & 1 & k\ 0 & 0 & 1-k^2end right)$.

Каким бы ни было значение параметра $k$, полученная нами после преобразований матрица будет содержать не менее двух ненулевых строк (первая и вторая строки точно останутся ненулевыми). Вопрос о количестве решений зависит лишь от третьей строки.

В следствии из теоремы Кронекера-Капелли указаны три случая, и в данном примере легко рассмотреть каждый из них. Начнём с варианта $rang Aneqrangwidetilde$, при котором система не имеет решений, т.е. несовместна.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

$rang Aneqrangwidetilde$

Ранги будут не равны друг другу лишь в одном случае: когда $1-k^2=0$, при этом $2k-2neq$. В этом случае преобразованная матрица системы будет содержать две ненулевых строки (т.е. $rang A=2$), а преобразованная расширенная матрица системы будет содержать три ненулевых строки (т.е. $rang widetilde=3$). Иными словами, нам требуется решить систему уравнений:

Из первого уравнения имеем: $k=1$ или $k=-1$, однако $kneq$, поэтому остаётся лишь один случай: $k=-1$. Следовательно, при $k=-1$ система не имеет решений.

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

$rang A=rangwidetilde<3$

Рассмотрим второй пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой, но меньше, чем количество переменных (т.е. меньше 3). Это возможно лишь в том случае, если последняя строка преобразованной расширенной матрицы системы полностью станет нулевой, т.е.

Из данной системы имеем: $k=1$. Именно при $k=1$ третья строка преобразованной расширенной матрицы системы станет нулевой, поэтому $rang=rangwidetilde=2$. При этом, повторюсь, у нас всего три переменных, т.е. имеем случай $rang A=rangwidetilde=2<3$.

Система имеет бесконечное количество решений. Найдём эти решения. Подставим $k=1$ в преобразованную матрицу и продолжим операции метода Гаусса. Третью строку (она станет нулевой) просто вычеркнем:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right)rightarrow|k=1|rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & 1 & 5 end right) rightarrowleft|begin&text\&textendright|rightarrow \ rightarrowleft(begin-1 & 1 &-2 &7\0 & 1 & -1 & 5endright) begin r_1-r_2\phantomend rightarrowleft(begin-1 & 0 &-1 &2\0 & 1 & -1 & 5endright) begin -1cdot\phantomend rightarrowleft(begin1 & 0 &1 &-2\0 & 1 & -1 & 5endright) $$

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

$rang A=rangwidetilde=3$

Рассмотрим третий пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой и равны количеству переменных. Это возможно лишь в том случае, если $1-k^2neq$, т.е. $kneq$ и $kneq$. Продолжаем решение методом Гаусса:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 endright)rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & (1-k)(1+k) & -2(1-k) endright) begin phantom\phantom\r_3:((1-k)(1+k))end rightarrow\ rightarrowleft(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-2r_3\r_2-kcdot\phantomend rightarrow left(begin -1 & 1 &0 &(7k+11)/(k+1) \0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-r_2\phantom\phantomendrightarrow\ rightarrow left(begin -1 & 0 &0 &6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin -1cdot\phantom\phantomendrightarrow left(begin 1 & 0 &0 &-6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) $$

Исследовать СЛАУ $left <begin& 2kx_1+x_2+x_3=0;\ & x_1-x_2+kx_3=1;\ & (k-6)x_1+2x_2-4x_3=-3.endright.$ на совместность и найти решение системы при тех значениях параметра, при которых она совместна.

Вновь, как и в предыдущем примере, для того, чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Чтобы исследовать систему на совместность и указать количество решений применим метод Крамера. Можно было бы решить и методом Гаусса, однако в предыдущем примере мы его уже использовали, поэтому для разнообразия решим задачу с помощью метода Крамера. Начнём с вычисления определителя матрицы системы. Этот определитель мы получим с помощью готовой формулы.

Значения переменных $x_1$, $x_2$, $x_3$ будут такими:

Нам остаётся исследовать совместность системы при условии $Delta=0$. Это равенство возможно при $k=0$ или $k=1$.

Видео:Исследование систем линейных уравнений на совместностьСкачать

Исследование систем линейных уравнений на совместность

Случай $k=0$

Нам остаётся рассмотреть последний случай: $k=1$.

Видео:Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

Случай $k=1$

Для наглядности я запишу здесь матрицу системы $A$ и расширенную матрицу системы $widetilde$, подставив $k=1$:

Если $k=1$, то $Delta=0$. Это значит, что $rang≤2$. Рассмотрим миноры второго порядка матрицы $A$. Например, возьмём минор, образованный на пересечении строк №1, №2 и столбцов №1, №2: $M=left|begin2 & 1\ 1 & -1endright|=-3$. Так как $Mneq$, то ранг матрицы $A$ равен 2.

Задача решена, осталось лишь записать ответ.

Разберём ещё один пример, в котором рассмотрим СЛАУ с четырьмя уравнениями.

Исследовать СЛАУ $ left <begin& kx_1+x_2+x_3+x_4=1;\ & x_1+kx_2+x_3+x_4=1;\ & x_1+x_2+kx_3+x_4=1;\ & x_1+x_2+x_3+kx_4=1.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Применим метод Гаусса. При записи расширенной матрицы системы поместим первую строку вниз, на место четвёртой строки. А дальше начнём стандартные операции метода Гаусса.

$$ left(begin 1 & k &1 &1&1 \ 1 & 1 &k &1&1 \ 1 & 1 &1 &k&1 \ k & 1 &1 &1&1 end right) begin phantom\r_2-r_1\r_3-r_1\r_4-kcdotendrightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) $$

Здесь можно было бы остановиться и рассмотреть случаи $k=1$ и $kneq$ отдельно. Цель таких действий: разделить вторую, третью и четвёртую строки на $k-1$ при условии $k-1neq$. Однако пока что полученная нами матрица содержит не столь уж громоздкие элементы, поэтому сейчас отвлекаться на частности я не вижу смысла. Продолжим преобразования в общем виде:

$$ left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) begin phantom\phantom\r_3-r_2\r_4-(k+1)r_2endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &(1-k)(k+2) &1-k&1-kend right) begin phantom\phantom\phantom\r_4-(k+2)r_3endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &0&(1-k)(k+3)&1-kend right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. До черты расположена преобразованная матрица системы. Ранги матриц $A$ и $widetilde$ зависят от значения параметра $k$. Рассмотрим три случая: $k=1$, $k=-3$ и случай $kneq$, $kneq$.

Видео:Найти ранг матрицы при всех значениях параметраСкачать

Найти ранг матрицы при всех значениях параметра

Случай $k=-3$

Видео:Фундаментальная система решений для однородной системы линейных уравненийСкачать

Фундаментальная система решений для однородной системы линейных уравнений

Случай $k=1$

Если $k=1$, то преобразованная матрица станет такой: $left(begin 1 & 1 &1 &1&1\ 0 & 0 &0 &0&0\ 0 & 0 &0&0&0\ 0 & 0 &0&0&0endright)$. Ранги матрицы системы и расширенной матрицы системы равны между собой (и равны 1), но меньше, чем количество переменных, т.е. $rang=rang=1<4$. Вывод: система является неопределённой. Общее решение системы непосредственно получим из первой строки записанной матрицы:

$$x_1+x_2+x_3+x_4=1; Rightarrow ; x_1=-x_2-x_3-x_4+1.$$

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Случай $kneq$ и $neq$

Продолжим решение методом Гаусса. Так как $kneq$ и $neq$, то $(1-k)(k+3)neq$. Следовательно, мы можем разделить вторую и третью строки на $1-k$, четвёртую строку – на выражение $(1-k)(k+3)$. С полученной после этого матрицей продолжим операции обратного хода метода Гаусса:

$$ left(begin 1 & k &1 &1&1\ 0 & 1 &-1 &0&0\ 0 & 0 &1&-1&0\ 0 & 0 &0&1&fracend right) begin r_1-r_4\phantom\phantom\r_3+r_4endrightarrow left(begin 1 & k &1 &0&frac\ 0 & 1 &-1 &0&0\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-r_3\r_2+r_3\phantom\phantomendrightarrow\ rightarrowleft(begin 1 & k &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-kcdot\phantom\phantom\phantomendrightarrow left(begin 1 & 0 &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) $$

Из последней матрицы имеем: $x_1=x_2=x_3=x_4=frac$.

  • При $k=-3$ система несовместна.
  • При $k=1$ система является неопределённой. Общее решение системы: $left<begin& x_1=-x_2-x_3-x_4+1;\&x_2in,;x_3in,;x_4in. endright.$
  • При $kneq$ и $kneq$ система является определённой. Решение системы: $x_1=x_2=x_3=x_4=frac$.

Видео:Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Системы линейных уравнений

Видео:Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

Классификация систем линейных уравнений

Определение. Две системы называются эквивалентными, если решение первой является решением второй и наоборот.

Определение. Система, имеющая хотя бы одно решение, называется совместной. Система, не имеющая ни одного решения, называется несовместной.

Определение. Система, имеющая единственное решение, называется определенной, а имеющая более одного решения – неопределенной.

📸 Видео

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

ФСР. Система однородных уравнений 2Скачать

ФСР. Система однородных уравнений 2

Решение системы уравнений в ExcelСкачать

Решение системы уравнений в Excel

13 Исследование систем линейных уравненийСкачать

13  Исследование систем линейных уравнений

14. Метод Гаусса решения систем линейных уравнений ( бесконечное множество решений ). Часть 3Скачать

14. Метод Гаусса решения систем линейных уравнений ( бесконечное множество решений ). Часть 3

Видеоурок "Однородные системы линейных уравнений"Скачать

Видеоурок "Однородные системы линейных уравнений"

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика
Поделиться или сохранить к себе: