- Инструменты сайта
- Основное
- Навигация
- Информация
- Действия
- Содержание
- Кривизна и кручение. Натуральные уравнения кривой
- Краткие теоретические сведения
- Кривизна кривой
- Кручение
- Натуральные уравнения кривой
- Решение задач
- Задача 1 (Феденко №351)
- Задача 2 (Феденко №380)
- Задача 3 (Феденко №405)
- Краткое решение задачи 3
- Задача 4 (Феденко №486, №514)
- Решение задачи 4
- Задача 5 (Феденко №496)
- Решение задачи 5
- Кривизна и кручение пространственной кривой. Формулы Френе
- Кручение винтовой линии постоянно
- Овоаиечение:
- Найти кривизну и кручение кривой заданной уравнениями
- 📹 Видео
Инструменты сайта
Основное
Навигация
Информация
Действия
Содержание
Видео:Кривизна кривой, заданной уравнениемСкачать
Кривизна и кручение. Натуральные уравнения кривой
Видео:Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать
Краткие теоретические сведения
Кривизна кривой
Кривизной $k$ кривой в данной точке называют модуль скорости вращения касательной по отношению к длине дуги.
Регулярная дважды дифференцируемая без особых точек кривая $gamma$, заданная векторной функцией $vec=vec(t)$, имеет в каждой точке определенную кривизну, причем $$ |k(t)|=frac<|vec(t)times vec(t)|><|vec|^3>. $$
Для кривой, заданной параметрически $$ x=x(t), ,, y=y(t), ,, z=z(t), $$ кривизна в точке $P(t=t_0)$ находится по формуле: $$ k^2(t_0)=frac<left| begin y’ & z’ \ y»& z» \ end right|^2+left| begin z’ & x’ \ z»& x» \ end right|^2+left| begin x’ & y’ \ x» & y» \ end right|^2>, $$ где все производные вычисляются при $t=t_0$.
Если кривая задана естественной параметризацией $vec=vec(s)$, то векторы $vec(s)$ и $vec(s)$ перпендикулярны, причем $|vec(s)|=1$. Тогда выражение для кривизны принимает вид: $$ k(s)= |vec(s)|. $$
Что вы скажете о кривой, которая в каждой свой точке имеет нулевую кривизну?
Кручение
Абсолютным кручением $varkappa$ кривой называют скорость вращения соприкасающейся плоскости вокруг касательной. $$ |varkappa (t)|=frac<|(vec(t), vec(t), vec(t))|><|vec(t)times vec(t)|^2>. $$
В случае естественной параметризации $$ |varkappa(s)|=frac<|(vec(s), vec(s), vec(s))|> $$
Натуральные уравнения кривой
Если кривая задана естественной параметризацией $vec=vec(s)$, то кривизна и кручение будут являться функциями длины дуги $$ k=k(s), quad varkappa=varkappa(s). $$ Система этих двух соотношений называется натуральными уравнениями кривой.
Натуральные уравнения полностью определяют форму кривой, ибо связывают инварианты, которые не меняются при преобразовании координат (при изменении положения указанной кривой в пространстве относительно системы координат).
Видео:Кривизна кривой, заданной параметрическиСкачать
Решение задач
Задача 1 (Феденко №351)
Найдите кривизну кривой: $$ x=a,mbox^3t,,,y=a,mbox^3t. $$
Задача 2 (Феденко №380)
Найдите параболу $y=ax^2+bx+c$, имеющую с синусоидой $y=mboxx$ в точке $A(pi/2,1)$ общие касательную и кривизну.
Задача 3 (Феденко №405)
Составьте натуральные уравнения кривой: $$ x=a(mbox,t+t,mbox,t), ,, y=a(mbox,t-t,mbox,t). $$
Краткое решение задачи 3
Натуральные уравнения: $$ k=frac,,,s=frac $$ или $$ k^2=frac. $$
Феденко записывает ответы через радиус кривизны: $R=frac$.
Задача 4 (Феденко №486, №514)
Найдите кривизну и кручение, составьте натуральные уравнения кривой: $$ x=a,mboxt, , y=a,mboxt, , z=a, t. $$
Решение задачи 4
Задачу можно решать двумя способами:
1 способ. Найти $k(t), varkappa(t), s(t)$.
2 способ. Сначала найти выразить $t$ через $s$ и записать естественную параметризацию кривой $vec=vec(s)$. А далее найти $k(s)$ и $varkappa(s)$.
В задаче №473 была та же кривая и мы получили, что $$s=asqrt,mbox,t.$$ Используя тождества для гиперболических функций, выразим $t$ через $s$ и подставим их в выражения для кривизны и кручения: begin s=asqrt,mboxt=asqrt,sqrt<mbox^2t-1> ,, Rightarrow ,, mbox^2t=frac+1 ,, Rightarrow end begin k(s)=varkappa(s)=frac<2a,mbox^2t> = frac. end
Вычисления сделаны для $a>0$.
Задача 5 (Феденко №496)
Найдите функцию $f(t)$, для которой данная кривая — плоская: $$ vec(t)=<a,mboxt, , a,mboxt, , f(t)> $$
Решение задачи 5
Для плоской кривой кручение равно нулю: begin varkappa(t) = left| begin -a,mboxt & a,mboxt & f'(t) \ -a,mboxt & -a,mboxt & f»(t) \ a,mboxt & -a,mboxt & f»'(t) \ end right| = left( f'(t) + f»'(t) right)cdot2a^2=0. end begin f'(t)=-f»'(t) quad Rightarrow quad f(t)=c_1+c_2,mboxt+c_3,mboxt. end
Как найти уравнение плоскости, в которой лежит кривая?
Известно, что плоская кривая лежит в своей соприкасающейся плоскости! Второй способ — составить уравнение плоскости по трем точкам.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Кривизна и кручение пространственной кривой. Формулы Френе
Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
Пусть 7 — регулярная кривая, Мо — точка кривой 7, П — плоскость, проходящая через касательную MoT кривой 7 в точке Мо. Пусть М — точка кривой 7, близкая к точке Мо, и Р — ортогональная проекция точки М на плоскость П (рис.31). Обозначим через h длину отрезка MP и через d — длину отрезка МоМ. Плоскость П называется соприкасающейся плоскостью кривой 7 в точке Мо, если отношение стремится к нулю при Геометрическое пояснение.
Среди всех плоскостей, проходяших через касательную к кривой в точке Мо, соприкасающаяся плоскость наиболее? есно прим ыкает к кривой в некоторой (малой) окрестности это Й точки. Пусть кривая 7 задана векторным уравнением и точка М0 кривой 7 отвечает значению to параметра. Если векторы неколлинеарны, то в точке Мо существует и притом ровно одна соприкасающаяся плоскость (рис. 32). Вектор г»(/о) Рис.32 второй производной вектора r(t) кривой лежит в соприкасающейся плоскости.
Поэтому соприкасающуюся плоскость кривой называют также плоскостью ускорений. Если кривая 7 задана в координатной форме Кривизна и кручение пространственной кривой Формулы Френе понятие гладкой поверхности Способы задания то уравнение соприкасающейся плоскости записывается в виде Нормаль кривой 7 в точке Мо, лежащая в соприкасающейся плоскости По кривой в этой точке, называется главной нормалью кривой в точке Мо, а нормаль кривой 7, перпендикулярная соприкасающейся плоскости По. называется бинормалью кривой 7 в точке Мо.
Плоскость, проходящая через касательную и бинормаль кривой 7 в точке Мо, называется спрямляющей плоскостью кривой 7 в точке Мо. Лрииар 1. Найти главную нормаль и бинормаль, соприкасающуюся и спрямляют ую плоскости аинтояой линии . Начнем с ураанаиия сопри касающейся плоскости. И МММ Так мак бинормаль перпендикулярна соприкасающейся плоскости , то ее каноничесяиа уравнения записываются следующим обр ааом:
Вычисли м теперь направляющий аактор главной нормали. Имеем Заменяя найден иый вектор на коллинеариый получаем канонические уравнения главной нормали : Наконец, — уравнение спрВмлющай плоосости , перпендикулярной главной нормали. (Первой) кривизной fcj кривой 7 в точке Мо называется предел отношения при М -» Мо, где ДА — наименьший угол между ка-сательн ыми к кривой 7 в ее точках Мо И М, а Да — длина дуги ^М0М (рис. 33).
Кривизна кривой измеряет скорость ее отклонения от касательн ой. Кривизна прямой равна нулю в каждой ее точке. /» Если — естественная параметризация кривой 7, то ее кривизна к вычисляется по формуле Вектор г»(«) называется вектором кривизны кривой. Он ортогонален единичному вектору касательной г'(«), а его длина равна кривизне кривой. .
В случае произвольной параметризации и кривизна2-регулярной кривой находится по формуле Пример 2. вектор кривизны винтовой линии Поэтому кривим винтов ой линии постол ни»: Пусть Мо — точка кривой у, отвечающая значению to естественного параметра, и — единичный вектор касательной кривой у в этой то же. Если точка Мо не является точкой распрямления кривой у» fciM/О.то формулой определен единичный вектор главной нормали кривой в этой точке.
Векторное произведение является единичным вектором бинормали кривой у (рис. 34).
В случае произвольнойпараметризаци и векторы t, п и b вычисляются по формулам Три луча, исходящие из точки М0 и имеющие направления, задаваемые векторами to, по и bo, образуют сопровождающий триэдр кривой у в точке Мо (рис. 34). Пример 3. Для винтовой линии b(,)= Обозначим через Д в наименьший угол между соприкасающимися плоскостями По и П кривой 7 в точке Мо и близкой ей точке М соответственно (этот угол совпадает с наименьшим углом ме.жду бинормалями кривой в точках А/о и М), а через Дз — длину дуги ^MqM кривой 7 (рис. 35).
Кручением к2 кривой 7 в точке М0 называется предел отношения ^ при , снабженный знаком в соответствии со следующим правилом выбора знаков: если векторы сонаправлены (они всегда коллинеарны), то выбирается знак (вращение соприкасающейся плоскости происходит от вектора п к вектору если векторы ип противоположно направлены, то выбирается знак « + » (вращение соприкасающейся плоскости происходит от вектора b к вектору п) (рис. 36).
Кручение кривой определено в любой точке 3-регулярной кривой, не являющейся точкой распрямления, и измеряет скорость отклонения кривой от соприкасающейся плоскости. Кручение плоской кривой равно нулю в каждой точке. Если Кривизна и кручение пространственной кривой Формулы Френе понятие гладкой поверхности Способы задания — естественная параметризация кривой, то ее кручение вычисляется по формуле В случае произвольной параметризации имеем Пример 4.
Возможно вам будут полезны данные страницы:
Кручение винтовой линии постоянно
Вектор Дарбу является вектором мгновенной угловой скорости сопровождающего трехгранника при движении точки по кривой с единичной скоростью. Пример 8. Вектор Дарбу винтовой линии •параллелен оси винтовой линии (рис. 37). Единичные векторы касательной главной нормали п(«) и бинормали b(e) кривой 7 и ее кривизна к(в) и кручение ki(a) в каждой точке связаны соотно шениями называемыми уравнениями Френе. «
Выберем в пространстве прямоугольную декартову координ етную систему Охух так, чтобы начало координат — точка О — совпадало с точкой Мо кривой 7, отвечающей энрч ению «о = 0 естественного параметра, а ортами координатных осей Ох, Оу и Ох были единичные векторы Раскладывая векторную функцию г(в) в окрестности точки «о = 0 по степеням * и сохраняя лишь главные члены, получимуравнения кривойблизкой кривой 7:
Где Записывая последние соотношения в координатной форме и предполагая , убеждаемся в том, что проекции кривой общий вид которой показан на.рис.38, на координатные плоскости имеют следующий вид (рис. 39): на соприкасающуюся плоскость (рис. 39 а); на спрямляющую плоскость (рис. 39 б); на нормальную плоскость (рис. 39в). §5. Понятие гладкой поверхности.
Способы задания Пусть I? — ограниченная плоская область, 0D — ее граница и I) = D U 6D — оамыка ние области Д, Введем на плоскости координатную систему (u, v) и зададим на множестве Ъ три непрерывные функции с Пусть ж прямоугольные декартовы координаты точек в трехмерном евклидовом пространстве R3.
Предположим, что функции (1) |
обладают следующим свойством: Сюйстю А. Если — различные точки множества!?» тоточки пространства R1, координаты которых вычисляются по формулам также различны. Определение. Множество 5 точек Af, координаты у и * которых определяются соотношениями (1) и функции ) обладают свойством А, называется простой поверхностью (рис. Множество точек М с координатами , — образ границы QD области D — называется границей простой поверхности 5.
Овоаиечение:
Соотношения (1) называются параметрическими уравнениями простой поверхно- сти. . Пример 1. График непрерывной функции является примером простой поверхности (рис. 41). Ее параметрические уравнения имеют вид одеФяап ып яктеодг — Пусть I, J и к — орты координатных осей. Тогда задание поверхности 5 при помощи фунхиий (1) равносильно заданию одной векторной функции — В этом случае говорят, что поверхность S задана векторным уравнением.
Простая поверхность 5 называется гладкой в точке Мо, отвечающей значениям и параметров, если функции имеют д точке («о, ^ непрерывныепроизводные. v Точка Ма гладкой поверхности 5 называется обыкновенной, или регулярной, если В противном случае точк!» А/о называется особой. , Поверхность называется регулярной, если условие (3) выполняется в каждой ее точке. Часто условие (3) удобнее записывать в равносильной форме Пример 2.
График гладкой функции является регулярной поверхностью, так как всегда Пример 3. У конической поверхности, задаваемой уравнениями все точки, кроме точки 0(0,0,0) (при и = 0, v — 0), регулярна (рис.42). В точке О имеем Другим распространенным способом задания поверхности является неявный способ задания поверхности какмножества 5 точек М .координаты х,уиг которых обращают в тождество уравнение Кривизна и кручение пространственной кривой Формулы Френе понятие гладкой поверхности Способы задания
Если гладкая фунщия своих аргументов, причем , то поверхность 5 будет регулярной. Пример 4. Сфера является регулярной поверхностью: в каждой точке. Пусть 5 — простая поверхность, Мо и М — различные ее точки. Плоскость П, проходящая через точку Мо, называется касательной к поверхности 5 в точке Мо, если при стремлении переменной точки М к точке Мо (по произвольному закону) угол между прямой МоМ и плоскостью П сгремится к нулю (рис. 43).
Пусть — векторное уравнение регулярной поверхности 5 и М0 — точка поверхности 5, отвечающая значениях! ио и v0 параметров и и v. Вычислим векторы ru(uo, vo) и г„(и0, vo), отложим их от точен Мо и проведем через точку Мо плоскость П, содержащую эти векторы. Построенная плоскость П будет касательной плоскостью поверхности в точке М0 (рис. 44), В каждой точке регулярной поверхности существует и притом ровно одна касательная плоскость.
Прямая, проходящая через точку Мо регулярной поверхности 5 и пер-пендакулярная касательной плоскости поверхности в этой точке, называется нормалью к поверхности 5 в точке М0; — вектор нормали. Рнс. 44 Пример S. Написать уравнения касательной плоскости и нормали поверхности, заданной уравнением Вычислим вектор нормали в точке Л/о- Имеем равнение касательной плоскости поверхности в точке (х
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Дифференциальная геометрия | пространственные кривые | конкретные вычисления | 1Скачать
Найти кривизну и кручение кривой заданной уравнениями
Пространственные кривые. Задание пространственной кривой. Регулярное задание кривой. Регулярная кривая. Неявное задание пространственной кривой. Касательная к пространственной кривой. Единичный вектор касательной. Бинормаль и главная нормаль и их единичные векторы. Нормальная, соприкасающаяся и спрямляющая плоскости. Ускорение при криволинейном движении и векторы сопровождающего трехгранника. Кривизна пространственной кривой. Теорема о прямой. Кручение пространственной кривой. Теорема о плоской кривой. Формулы Френе. Естественный параметр и натуральные уравнения кривой.
Основные определения, результаты, комментарии
Элементарной кривой в пространстве называется образ открытого интервала при его гомеоморфизме в евклидово трехмерное пространство.
Общей кривой на плоскости называется подмножество евклидова пространства, локально гомеоморфное прямой.
Как и в случае плоских кривых, всякая общая кривая допускает покрытие элементарными кривыми.
Кривая задана неявным способом
если координаты каждой точки кривой удовлетворяют обоим уравнениям .
Наиболее удобны и наиболее часто используются векторно-параметрическое представление
и координатно-параметрическое представление
отличающиеся лишь формой записи.
Определение регулярности параметрического представления пространственной кривой полностью аналогично плоскому случаю.
Неявное задание (5) кривой регулярно в точке , если матрица частных производных
имеет в этой точке ранг 2.
Понятия длины кривой, ее естественной параметризации, а также определение касательной полностью аналогичны тем же понятиям для плоских кривых. Направляющий вектор касательной — это, по-прежнему, производная , имеющая физический смысл скорости, если параметрическое представление кривой интерпретировать как кинематическое описание движения точки.
Нормальная плоскость кривой в точке — это плоскость, проходящая через точку ортогонально касательной.
Соприкасающейся плоскостью кривой в ее точке (рис. 17) называется содержащая эту точку плоскость , удовлетворяющая соотношению
где — точка, принадлежащая элементарной окрестности точки .
Спрямляющей плоскостью кривой в ее точке называется содержащая эту точку плоскость, ортогональная нормальной и соприкасающейся плоскостям в этой точке.
Прямые, ортогональные соприкасающейся и спрямляющей плоскостям в точке , называются соответственно бинормалью и главной нормалью кривой в точке .
Нормальная, соприкасающаяся и спрямляющая плоскости образуют сопровождающий трехгранник кривой , или трехгранник Френе , в точке , и называются его гранями . Касательная, бинормаль и главная нормаль называются ребрами сопровождающего трехгранника (рис. 18).
Уравнения элементов сопровождающего трехгранника вычисляются по следующим правилам:
Касательная | Нормальная плоскость |
Бинормаль | Соприкасающаяся плоскость |
Главная нормаль | Спрямляющая плоскость |
Единичные векторы
касательной |
главной нормали |
бинормали |
Если параметризация естественная , то вектор главной нормали может быть вычислен по формуле .
Вектор ускорения может быть разложен в сумму двух составляющих: нормальной (ортогональной вектору скорости) и тангенциальной (параллельной вектору скорости). При этом нормальная составляющая ускорения сонаправлена единичному вектору главной нормали.
Пусть и — две различные точки кривой , соответствующие значениям и естественного параметра. Тогда — длина дуги кривой, заключенной между точками и . Пусть — величина угла, образуемого касательной к кривой в точке по отношению к касательной в точке . Кривизна кривой в ее точке — это предел
В отличие от кривизны плоской кривой, кривизна пространственной кривой всегда положительна . Кривизна пространственной кривой в регулярной точке может быть вычислена по формулам:
если параметризация естественная. |
Пусть и — две различные точки кривой , соответствующие значениям естественного параметра и соответственно, и — единичные векторы бинормалей в этих точках (рис. 19).
Обозначим за величину угла между ними. Очевидно, этот угол равен углу, образованному соприкасающимися плоскостями в точках и .
Абсолютным кручением кривой в точке называют величину
Кручение кривой определяется в соответствии со следующим правилом: если при движении вдоль кривой по направлению возрастания параметра вектор бинормали поворачивается в сторону, указываемую вектором , в противном случае. Наглядно это означает, что кривая с положительным кручением «закручена» по правилу правого винта.
Кручение кривой в точке, соответствующей значению параметра , может быть вычислено по следующим формулам:
Для производных векторов , по естественному параметру справедливы формулы Френе :
Уравнения и называются натуральными уравнениями кривой. По натуральным уравнениям вид кривой может быть восстановлен с точностью до перемещения. В большинстве случаев решение такой задачи оказывается очень сложным.
1. Для данных представлений кривых укажите область допустимых значений параметра и область значений параметра, в которой задание кривой регулярно.
1)
2)
3)
4) .
2. Кривая задана неявными уравнениями. Изобразите на рисунке вид кривой. Постройте какое-нибудь параметрическое представления этой кривой. Укажите область допустимого изменения параметра и область регулярности параметризации.
1)
2) R,;; y>0;$ —> R,;; y>0;$»>
3)
3. Кривая Вивиани образована пересечением сферы радиуса и цилиндра радиуса , проходящего через центр сферы. Постройте параметрическое представление кривой Вивиани.
4. Винтовая линия. Окружность радиуса движется так, что ее центр перемещается вдоль оси , плоскость ортогональна оси . По окружности равномерно движется точка. В начальный момент времени точка имеет координаты . Составьте параметрические уравнения кривой, описываемой данной точкой.
5. Кривая задана пересечением цилиндрических поверхностей и Постройте параметрическое представление кривой , не содержащее радикалов, и дайте ее изображение.
6. Покажите, что линия
принадлежит сфере и является линией пересечения параболического и кругового цилиндров.
7. Найдите длину дуги линии
между плоскостями и .
8. Покажите, что кривая замкнута и имеет длину .
9. Запишите в естественной параметризации
a) винтовую линию ;
б) гиперболическую винтовую линию .
10. Кривая задана параметрически: 0. end —>
Напишите уравнения
а) касательной и нормальной плоскости в точке (1/4; 1/3; 1/2);
б) касательной, параллельной плоскости .
11. Найдите линию, по которой касательные к линии
Сферической индикатрисой данной кривой называется геометрическое место концов единичных касательных векторов, отложенных от начала координат.
12. Дана винтовая линия
a) Напишите уравнение семейства касательных этой кривой;
б) убедитесь в том, что все касательные к винтовой линии образуют с плоскостью один и тот же угол;
в) составьте уравнение кривой, образуемой точками пересечения касательных с плоскостью ;
г) найдите сферическую индикатрису винтовой линии.
13. Докажите, что все нормальные плоскости кривой Вивиани (задача 3) проходят через начало координат.
14. Составьте уравнения бинормали и главной нормали кривой в указанной точке:
1)
2)
3) ;
4)
15. Найдите точки на кривой
в которых бинормаль параллельна плоскости .
16. Материальная точка движется в пространстве по закону
Укажите моменты времени, в которые
а) ее скорость равна нулю, и сравните их со значениями параметра , при которых параметризация траектории нерегулярна;
б) нормальное ускорение точки ортогонально .
17. Составьте уравнения ребер и граней сопровождающего трехгранника данной кривой в указанной точке
1)
2)
3)
4)
18. Для данной кривой вычислите кривизну в данной точке сначала по готовой формуле, а затем по следующему плану: 1) составьте уравнение поля единичных касательных векторов данной кривой; 2) вычислите абсолютную величину производной этого поля по естественному параметру. Результаты сравните.
1) 0,;; bne 0, ;; t_0=pi/2$ —> 0,;; bne 0, ;; t_0=pi/2$»>
2)
19. Для кривых задачи 18 вычислите абсолютное кручение в данной точке сначала по готовой формуле, а затем по следующему плану: 1) составьте уравнение поля единичных векторов бинормали данной кривой; 2) вычислите абсолютную величину производной этого поля по естественному параметру. Результаты сравните.
20. Вычислите кривизну и кручение данной кривой произвольной регулярной точке:
1) 0,;; bne 0$ —> 0,;; bne 0$»>;
2)
3)
4) .
21. Найдите точки распрямления следующих кривых:
1)
2)
3) .
22. Найдите точки уплощения и дуги, на которых кручение сохраняет свой знак, у следующих кривых:
1)
2)
23. Напишите натуральные уравнения, которым удовлетворяют следующие кривые:
1) 0,;; bne 0$ —> 0,;; bne 0$»>;
2)
24. Найдите точки на кривой
в которых кривизна принимает локально минимальное значение.
25. Найдите точки на кривой
в которых радиус кривизны достигает локального максимума.
26. Докажите, что следующие кривые плоские, и составьте уравнения плоскостей, в которых они расположены:
27. Найдите такую функцию , чтобы кривая
была плоской. Решите задачу двумя способами: 1) используя условие плоскости и 2) используя тот факт, что искомая кривая принадлежит круговому цилиндру (составьте его уравнение!). Результаты сравните.
28. Докажите, что если все соприкасающиеся плоскости линии проходят через неподвижную точку , то линия плоская.
29. Докажите, что если соприкасающиеся плоскости линии (отличной от прямой) параллельны некоторому вектору , то линия плоская.
30. Докажите, что если все нормальные плоскости линии параллельны некоторому вектору , то линия или прямая, или плоская.
📹 Видео
§31.1 Приведение уравнения кривой к каноническому видуСкачать
Кривизна траекторииСкачать
Кривые, заданные параметрическиСкачать
Дифференциальная геометрия | формула для кручения | случай натуральной параметризацииСкачать
Дифференциальная геометрия | кривизна плоской кривойСкачать
радиус кривизныСкачать
14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать
Кривизна функции. Радиус кривизныСкачать
Иванов А. О. - Классическая дифференциальная геометрия I - Плоские и пространственные кривыеСкачать
Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать
Смирнов С. В. - Дифференциальная геометрия - Кривизна кривойСкачать
Смирнов С. В. - Дифференциальная геометрия - Кривые: разбор задачСкачать
кривизна как обобщённая функция | экспромты о дифференциальной геометрииСкачать
Дифференциальная геометрия | кривизна | конкретные вычисления | 1Скачать
Кривизна кривой и главная нормальСкачать