Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Расстояние от точки до плоскости онлайн

С помощю этого онлайн калькулятора можно найти расстояние от точки до заданной плоскости. Дается подробное решение с пояснениями. Для вычисления расстояния от точки до плоскости введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Задача C2: расстояние от точки до плоскостиСкачать

Задача C2: расстояние от точки до плоскости

Расстояние от точки до плоскости − теория, примеры и решения

Для нахождения расстояния от точки M0 до плоскости α, необходимо найти расстояние от точки M0 до проекции точки M0 на плоскость α:

Нахождение расстояния от точки до плоскости содержит следующие шаги:

  1. построение прямой L, проходящей через точку M0 и перпендикулярной плоскости α.
  2. нахождение точки M1 пересечения плоскости α с прямой L(Рис.1).
  3. вычисление расстояния между точками M0 и M1.
Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

1. Общее уравнение плоскости имеет вид:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональной плоскости (1) имеет следующий вид:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(3)

Для нахождения точку пересечения прямой L с плоскостью α, проще всего рассматривать параметрическое уравнение прямой. Составим ее

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Выразим переменные x, y, z через рараметр t.

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(4)

2. Найдем точку пересечения прямой (4) с плоскостью (1). Для этого нужно найти такой параметр t, при котором точка M(x, y, z) принадлежит плоскости (1). Поэтому подставим значения x,y,z из выражения (4) в (1) и решим относительно t.

A(At+x0)+B(Bt+y0)+C(At+z0)+D=0,
A 2 t+Ax0+B 2 t+By0+C 2 t+Cz0+D=0,
Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(5)

3. Найдем, наконец, расстояние от точки M0 до плоскости (1). Очевидно, что расстояние от точки M0 до плоскости (1) − это расстояние от точки M0 до точки M1. А это расстояние вычисляется так:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Учитывая значение параметра t, имеем:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(6)

Пример 1. Найти расстояние от точки M0(2, -1, -9/31) до плоскости

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(7)

Нормальный вектор плоскости имеет вид:

Подставляя координаты точки M0 и нормального вектора плоскости в (5), получим:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайнНайти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн(8)

Из выражений (4) находим:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн
Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн
Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Проекцией точки M0(2, -1, -9/31) на плоскость (7) является точка:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн.

Вычислим расстояние между точками M0 и M1:

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн.
Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн.

Расстояние от точки M0(2, -1, -9/31) до плоскости (7):

Видео:7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямыми

Онлайн калькулятор. Расстояние от точки до плоскости

Предлагаю вам воспользоваться онлайн калькулятором для вычисления расстояния от точки до плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление расстояния от точки до плоскости и закрепить пройденный материал.

Видео:Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Найти расстояние от точки до плоскости

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Ввод данных в калькулятор для вычисления расстояния от точки до плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления расстояния от точки до плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория: Расстояние от точки до плоскости

Найти кратчайшее расстояние от точки до поверхности заданной уравнением онлайн

Расстояние от точки до плоскости — равно длине перпендикуляра, опущенного из точки на плоскость.

Если задано уравнение плоскости A x + B y + C z + D = 0, то расстояние от точки M(M x , M y , M z ) до плоскости можно найти используя следующую формулу

d =|A·M x + B·M y + C·M z + D|
√ A 2 + B 2 + C 2

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:7. Расстояние от точки до плоскости (вывод формулы примеры)Скачать

7. Расстояние от точки до плоскости (вывод формулы примеры)

Калькулятор онлайн.
Вычисление расстояния от точки до плоскости

Этот калькулятор онлайн вычисляет расстояния от точки до плоскости заданной в виде общего уравнения плоскости:
$$ Ax+By+Cz+D=0 $$

Онлайн калькулятор для вычисления расстояния от точки до плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Наш онлайн калькулятор дает не только ответ задачи, но и отображает процесс решения по шагам. В результате вы сможете понять процесс решения задач на нахождение расстояния от точки до плоскости.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )

📽️ Видео

Расстояние от точки до различных поверхностейСкачать

Расстояние от точки до различных поверхностей

10 класс, 19 урок, Расстояние от точки до плоскостиСкачать

10 класс, 19 урок, Расстояние от точки до плоскости

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

Урок 10. Расстояние от точки до плоскости. Компенсация расстояний. Стереометрия с нуля.Скачать

Урок 10. Расстояние от точки до плоскости. Компенсация расстояний. Стереометрия с нуля.

✓ Как решать стереометрию | ЕГЭ-2023. Математика. Профильный уровень. Задание 13 | Борис ТрушинСкачать

✓ Как решать стереометрию | ЕГЭ-2023. Математика. Профильный уровень. Задание 13 | Борис Трушин

расстояние от точки до плоскостиСкачать

расстояние от точки до плоскости

Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.Скачать

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.

Замена плоскостей проекции(Расстояние от точки до прямой)Скачать

Замена плоскостей проекции(Расстояние от точки до прямой)

Расстояние от точки до плоскости / Вывод формулыСкачать

Расстояние от точки до плоскости / Вывод формулы

Расстояние от точки до прямойСкачать

Расстояние от точки до прямой

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей | Математика | TutorOnlineСкачать

Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей  | Математика | TutorOnline

Расстояние от точки до плоскости.Метод ОбъемовСкачать

Расстояние от точки до плоскости.Метод Объемов

Лекция 24. Расстояние от точки до прямой на плоскости.Скачать

Лекция 24. Расстояние от точки до прямой на плоскости.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.
Поделиться или сохранить к себе: