Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
- Что такое уравнение? Смысл и понятия.
- Правила уменьшения или увеличения уравнения на определенное число.
- Правила уменьшения или увеличения уравнения в несколько раз.
- Как решать уравнения? Алгоритм действий.
- Урок 17 Бесплатно Уравнение
- Уравнения
- Памятка : «Решение уравнений», 5 класс
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 🌟 Видео
Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Видео:Математика. 5 класс. Уравнение. Корень уравнения /15.09.2020/Скачать
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x= 2x -5
4+3x -2x =-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
Далее делим все уравнение на 3.
3x :3 =45 :3
(3:3)x=15
Сделаем проверку. Подставим в уравнение найденный корень.
Видео:11. Уравнения (Виленкин, 5 класс)Скачать
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
Видео:Уравнения. 5 классСкачать
Урок 17 Бесплатно Уравнение
Часто приходится описывать реальную ситуацию, процесс, явление с помощью математического языка.
Математический язык- универсальный язык, с помощью него можно однозначно и кратко описать многие закономерности, процессы, задачи и т.д.
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Описывая реальность с помощью математического языка, люди создают математические модели, превращающие слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель дает возможность решать огромное количество практических (природных, технических, научных, экономических, социальных и других) задач.
Математические модели делят на:
- Словесные.
- Графические (схемы, графики, чертежи, рисунки и т.д.).
- Аналитические (алгебраические: числовые равенства, неравенства, уравнения, формулы и т.д.).
На данном уроке подробно рассмотрим одну из аналитических математических моделей- уравнение.
Выясним, что такое уравнение и что называют корнем уравнения.
Рассмотрим простейшие виды уравнений.
Разберем способы и приемы решения уравнений с одним неизвестным.
Рассмотрим алгоритм и примеры решения задач с помощью уравнений.
Видео:5 класс. Уравнение. Компоненты уравнения. Корень уравнения и его проверка.Скачать
Уравнения
Часто при решении задач приходится составлять равенства.
Два выражения (числовые или буквенные), соединенные знаком равно «=», образуют равенство.
В математике различают два вида равенств: тождества и уравнения.
Тождества- это числовые равенства, а также равенства, которые выполняются при всех допустимых значениях переменных, входящих в него.
Уравнение- это равенство, содержащее неизвестные числа, обозначенные буквами, значение которых можно определить.
Неизвестное число, входящее в уравнение, называют неизвестным членом уравнения (или просто «неизвестным»).
Чаще всего в математике неизвестные величины обозначают маленькими буквами латинского алфавита x, y, z.
У меня есть дополнительная информация к этой части урока!
Долгое время в математических выкладках не использовали буквенные обозначения и записывали выражения и уравнения словами.
В 1591 году французский ученый философ Франсуа Виет ввел буквенные обозначения. Он предложил использовать гласные буквы латинского алфавита для названия величин, а согласные для неизвестных.
Позже другой французский ученый, философ Рене Декарт предложил иную систему обозначений, связанную с латинскими буквами (которую используют по сегодняшний день).
Для неизвестных было предложено использовать последние буквы латинского алфавита (х, у, z), а для известных величин первые буквы латинского алфавита (а, b, c)
Пример 1:
4 + х = 18 является уравнением с неизвестной х.
12у — 5 = 19 является уравнением с неизвестной у.
(2 + z) — (3 — 1) = 2 является уравнением с неизвестной z.
Все три записи являются равенствами, в каждом из них есть неизвестное число, обозначенное буквой.
Пример 2:
4х — 18 не является уравнением, так как не является равенством.
24 — 5 = 19 не является уравнением, так как не содержит неизвестную.
у + 2 > 12 не является уравнением, так как не является равенством.
Решить уравнение- это значит найти неизвестное число, при котором из уравнения получается верное равенство.
Уравнение считается решенным, если все его решения найдены или доказано, что уравнение решения не имеет.
Значение неизвестного, обращающее уравнение в верное равенство, называют корнем уравнения.
Следовательно, если в уравнение вместо неизвестной подставить ее численное значение и получится верное числовое равенство, то это значение неизвестной будет решением этого уравнения.
Дано уравнение 12 — х + 3 = 10.
1) Пусть х равно 6, получаем
12 — 6 + 3 = 10
9 ≠ 10 (девять не равно десяти)
При подстановке вместо неизвестного число 6, получаем неверное числовое равенство 9 ≠ 10, т.е. число 6 не является корнем уравнения.
2) Пусть х равно 5, получаем
12 — 5 + 3 = 10
10 = 10
При подстановке вместо неизвестного число 5, получаем верное числовое равенство 10 = 10, т.е. число 5 является корнем уравнения.
Уравнение может иметь разное количество корней: существуют уравнения, имеющие один единственный корень, уравнения, имеющие два, три корня.
Встречаются уравнения, вообще не имеющие верного решения, и даже такие уравнения, решением которых являются бесконечное множество решений.
7 — х = 4 уравнение имеет один корень, х = 3, любое другое значение х будет давать неверное равенство.
х = х — 15 уравнение не имеет решения, так как любое значение неизвестного х будет данное равенство обращать в неверное, не существует таких чисел, которые были бы меньше самого себя.
0 ⋅ y = 0 уравнение имеет бесконечное множество верных решений, так как при умножении любого числа на 0, получается 0.
Уравнение, содержащее одну неизвестную, называют уравнением с одной неизвестной.
Уравнения с большим количеством неизвестным называют соответственно уравнением с двумя, тремя и т.д. неизвестными.
Такие уравнения и их решение будете рассматривать в старших классах.
Например, 26 — 2х = 23 — х— это уравнение с одной неизвестной х.
53 — х = 19у— это уравнение с двумя неизвестными х и у.
Любое уравнение имеет левую и правую часть.
Выражение, стоящее слева от знака равно, называют левой частью уравнения, а выражение, которое стоит справа, правой частью уравнения.
Каждый компонент, из которых состоит уравнение, называют членами этого уравнения.
Обычно все члены уравнения, содержащие неизвестное, следует группировать в левой части уравнения, а известные — в правой.
Чаще всего уравнение записывают в левой части страницы, справа делают письменные вычисления (вычислительные операции).
При решении уравнения каждое новое равенство записывается с новой строки (т.е. решение оформляется в виде столбика равенств).
Таким образом, знак равенства при решении уравнения используют только один раз в каждой строке.
Пройти тест и получить оценку можно после входа или регистрации
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Памятка : «Решение уравнений», 5 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Проверка: (150 – 87) – 27 = 36;
87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность
41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
Проверка: 87- ( 41 + 24 ) = 22;
(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
(237 + х) – 583 = 149;
468 – ( 259 – х) = 382;
(237 + х) – 583 = 149;
237 + х = 149 + 583;
(237 + х) – 583 = 149;
237 + х – 583 = 149;
х – (583 – 237) = 149;
468 – ( 259 – х) = 382;
259 – х = 468 – 382;
468 – ( 259 – х) = 382; 468 – 259 + х = 382;
Решение уравнений, приведение подобных слагаемых
Пример 1: 8х-х=49 ; сначала запишем знаки умножения,
8*х-1*х=49 ; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*7=49 ; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель
Пример 2: 2х+5х+350=700 ; воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*(2+5)+350=700 ; приведем подобные слагаемые (т.е. сложим числа в скобках)
7х является неизвестным слагаемым . Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
7х=350; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель
2*50 + 5*50 + 350 = 700;
100 + 250 + 350 = 700;
Пример: 270: х + 2 = 47;
( 270 : х — является слагаемым.
Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
( х является делителем . Чтобы найти неизвестный делитель , нужно делимое разделить на частное)
Пример: а : 5 – 12 = 23;
Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое )
( а является делимым. Чтобы найти неизвестное делимое , нужно частное умножить на делитель .
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 952 человека из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 683 человека из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 313 человек из 70 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Уравнение. 5 класс.Скачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 565 433 материала в базе
Материал подходит для УМК
«Математика», Виленкин Н.Я., Жохов В.И. и др.
Другие материалы
- 09.12.2019
- 253
- 2
- 08.12.2019
- 250
- 0
- 19.11.2019
- 200
- 2
- 18.11.2019
- 894
- 7
- 18.11.2019
- 308
- 0
- 17.11.2019
- 317
- 0
- 17.11.2019
- 285
- 10
- 17.11.2019
- 210
- 4
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 15.12.2019 55139
- DOCX 17.4 кбайт
- 6496 скачиваний
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Кретинина Светлана Сергеевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 4 года и 5 месяцев
- Подписчики: 0
- Всего просмотров: 59786
- Всего материалов: 9
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
ЕГЭ в 2022 году будут сдавать почти 737 тыс. человек
Время чтения: 2 минуты
Тринадцатилетняя школьница из Индии разработала приложение против буллинга
Время чтения: 1 минута
В Рособрнадзоре рассказали, как будет меняться ЕГЭ
Время чтения: 2 минуты
Профессия педагога на третьем месте по популярности среди абитуриентов
Время чтения: 1 минута
Объявлен конкурс дизайн-проектов для школьных пространств
Время чтения: 2 минуты
Новые курсы: управление детским садом, коучинг, немецкий язык и другие
Время чтения: 18 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
🌟 Видео
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Уравнения со скобками - 5 класс (примеры)Скачать
Корни уравнения. 5 классСкачать
Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
МАТЕМАТИКА 5 класс: Уравнение | Короткий видеоурокСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Математика. 5 класс. Уравнение. Корень уравнения /16.09.2020/Скачать
Математика 5 класс. 12 октября. Уравнения #4Скачать
Задание №3 "Найти корень уравнения" по теме "Уравнения с переносом" Математика 5, 6 классСкачать