Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором
- Нахождение центра и радиуса окружности по общему уравнению окружности
- Уравнение НЕ является общим уравнением окружности
- Приведение общего уравнения окружности к стандартному виду
- Найдите координаты центра и радиус сферы. ГДЗ, задача 578, Геометрия, 10-11 класс, Атанасян Л.С.
- Задача 29234 5.1.27. Найти координаты центра и радиус.
- Условие
- Решение
- 🔥 Видео
Нахождение центра и радиуса окружности по общему уравнению окружности
Уравнение НЕ является общим уравнением окружности
Приведение общего уравнения окружности к стандартному виду
Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде
Из этого уравнения достаточно легко найти центр окружности — это будет точка с координатами (a,b), и радиус окружности — это будет квадратный корень из правой части уравнения.
Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:
Это — уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.
Способ решения такого рода задач следующий:
Перегруппируем слагаемые уравнения
Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число — значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.
Для решения обратной задачи — нахождения общего уравнения окружности по координатам центра и радиусу — можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах
Видео:№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать
Найдите координаты центра и радиус сферы. ГДЗ, задача 578, Геометрия, 10-11 класс, Атанасян Л.С.
Найдите координаты центра и радиус сферы, заданной уравнением: а) х 2 + у 2 + z 2 = 49; б) (х — 3) 2 + (у + 2) 2 + z 2 = 2.
а) х 2 +у 2 + z 2 = 49.
(х-х0) 2 +(у-y0) 2 +(z-z0) 2 = R 2 , где R — радиус сферы, (х0;у0;z0)
— координаты точки С, центра сферы. В нашем случае
х-х0 =х; у-у0 =у: z-z0 =z, поэтому х0 = 0; у0 = 0, z0=0. a R = √49 = 7. Координаты центра (0;0;0), радиус: 7.
б)(x-x0) 2 +(y-y0) 2 +x 2 =2
(x-x0) 2 +(y-y0) 2 +(z-z0) 2 = R 2 , х-3 = х-х0, х0 =3;
у+2. = у-у0, у0 = -2; z-z0=z, zо=0; 2 = R 2 , R = √2
Координаты центра: (3;-2;0), радиус: √2.
Видео:Найти центр и радиус окружностиСкачать
Задача 29234 5.1.27. Найти координаты центра и радиус.
Условие
5.1.27. Найти координаты центра и радиус сферической поверхности,
заданной уравнением x^2+y^2+z^2-2x+6z-6=0
Решение
Нормальное уравнение сферы
(x-a)^2+(y-b)^2+(z-c)^2=R^2
c центром в точке (a;b;c) и радиусом R
Выделяем полные квадраты
(x^2-2x)+y^2+(z^2+6z)-6=0
(x^2-2x+1)+y^2+(x^2+6z+9)-1-9-6=0
О т в е т. (1;0;-3) — координаты центра; R=4
🔥 Видео
№579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координатыСкачать
№576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0),Скачать
Урок 5 Уравнение сферыСкачать
11 класс, 20 урок, Уравнение сферыСкачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
11 класс, 19 урок, Сфера и шарСкачать
Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать
Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать
№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)Скачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
9 класс, 6 урок, Уравнение окружностиСкачать
№959. Начертите окружность, заданную уравнением: а) х2+у2= 9Скачать
УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрияСкачать
№584. Все стороны треугольника ABC касаются сферы радиуса 5 см. Найдите расстояние от центра сферыСкачать
Геометрия 11 класс (Урок№8 - Сфера и шар.)Скачать
Уравнение окружностиСкачать