- Канонические уравнения Гамильтона
- Принцип наименьшего действия в аналитической механике
- Не все так просто
- 1. Определение действия по Гамильтону. Принцип наименьшего действия
- 2. Границы применимости принципа наименьшего действия. Некоторые определения для самых маленьких
- 3. Понятие о вариациях обобщенных координат. Постановка вариационной задачи
- 4. Решение вариационной задачи. Уравнения Лагранжа 2-го рода
- 5. Задача с шариком и стенкой
- Выводы и пожелания
- ВАРИАЦИОННЫЕ ПРИНЦИПЫ И АНАЛИТИЧЕСКАЯ МЕХАНИКА
- КАНОНИЧЕСКИЕ УРАВНЕНИЯ ГАМИЛЬТОНА. ПЕРВЫЕ ИНТЕГРАЛЫ
- 🔥 Видео
Видео:Уравнения Гамильтона (динамика)Скачать
Канонические уравнения Гамильтона
- Подумайте о консервативной материальной системе, где свобода — это s. Обобщенные координаты qb qt, qs select. Чтобы использовать эту систему, используя уравнение Лагранжа 2-го порядка, необходимо создать дифференциальное уравнение 2-го порядка. Для П-функции Лагранжа. Уменьшите число уравнений в 2 раза, чтобы уменьшить порядок первого дифференциального уравнения из 2-го дифференциального уравнения.
Создание нормального уравнения рекомендуется выполнять в следующем порядке. 1 Найти число степеней свободы данной консервативной материальной системы и выбрать соответствующие обобщенные координаты 2 Найти обобщенный импульс, сопряженный с выбранными обобщенными координатами см. пункт 1 в этом разделе 3 вычислить функцию Гамильтона см. подраздел 2 в этом разделе.4 Создайте стандартное уравнение, используя формулу 8.Задание 17.12.Создайте стандартное уравнение движения свободных материальных точек массой m в гравитационном поле. Выберите декартовы координаты x, y и r в качестве обобщенных координат. Решение.
Вторые слагаемые уравнений (9) и (20) соответственно определяют вынужденные колебания стрелки В при отсутствии и при наличии силы сопротивления движению. Людмила Фирмаль
Это можно сделать по-разному ways .In в частности, если к координатам добавляются дополнительные координаты-универсальный момент pt, pp. Параметры qt и 1 2.. A называется регулярной переменной. Обобщенная координата qt и соответствующий ей импульс p сопряженная называется канонической переменной. Эти 2 канонические переменные соответствуют 2 из канонического уравнения Гамильтона. Где i-функция Гамильтона, 4 1, 2,. .это Каноническое уравнение Гамильтона является обыкновенным дифференциальным уравнением на 2-м этаже а не частным дифференциалом это не. Помимо механики, стандартные уравнения используются в квантовой механике, электродинамике и других дисциплинах теоретической физики.
Есть 3 степени свободы для свободного материала points .So, чтобы объяснить его движение, нам нужно 6 канонических переменных. Обобщенный импульс px, pu, pg был задан в уравнении вещества 17.7 2.Создайте 6 уравнений Гамильтона 8.в этом случае у вас есть следующий вид пеленгатор 5G ОТЛИЧИТЕЛЬНОЕ ИМЯ. ГПЦ прочая Л. Используйте функцию Гамильтона H, составленную в вопросе 17.9 см. уравнение 3 W 2 pl p pl wgz .Подставляя это значение и в уравнение 1, находим искомое стандартное уравнение.— П.
Эти канонические уравнения размером 1 на 6 для переменных x, y, z, px, Py, pg можно свести к дифференциальным уравнениям размером 2 на 3 для переменных x, y и R. In факт, вычисляя производные по Времени первых 3 канонических уравнений 2 и решая их относительно px, pu, px Подставляя уравнение 2 Эти значения находятся в последних 3 стандартных px, pu, pg после уменьшения m .e 0, J 0 2 г. 3. Уравнение 3 является дифференциальным уравнением для свободных материальных точек в гравитационном поле проекции на Декартовы координатные оси.
Задача 17.13. To создайте стандартное уравнение движения свободной материальной точки массой m под действием квазиупругой силы F cr см. Рисунок, c-постоянный коэффициент. Игнорируйте сопротивление движению. Выберите декартовы координаты x, y и g в качестве обобщенных координат. Решение. Есть 3 степени свободы для свободных материальных точек.3 обобщенные координаты Oi x, Q z К выпуску 17.13.Существует 3 сопряженных обобщенных импульса px, pu, pg .вычислить кинетическую энергию массы точек для определения ПВ, Пу, И П Т 4-1Н м х 2 Л- 1 Обобщенный импульс равен Сила F-это потенциал, и поскольку связи нет, функция Гамильтона равна его полной механической энергии.
Напомним, что потенциальная энергия-это работа, которую потенциальная сила выполняет при перемещении материальной точки из определенного положения в другое. zero .So в этом случае О, да.— ЗР -Р-РФР — в.4 заметим, что r2×2 y z2, запишем Формулу 4 в следующем формате н х ЮЖД з.5 Если подставить результат I и b выражения 3 Уравнение 6 все еще должно зависеть от обобщенных координат и обобщения, поэтому функция Гамильтона пока не нужна. Шейка матки impulse .So, используя формулу 2, мы представляем обобщенную скорость в соответствии с обобщенным импульсом.
- Введем выражения A, и получим Гамильтонову функцию в выражении 6 в виде Приступим к созданию канонического уравнения ду Р 7. Формат в этом случае является Подставим формулу функции в формулу 8 и получим стандартное уравнение интересующего движения из Формулы 7.Т ПРОМАЛЬП — СХ ру — П — автомат. 9 6 канонических переменных х, г, р, РХ, Р Мы получили 1 6-е каноническое уравнение, соответствующее П. эти уравнения можно свести к 2, 3 дифференциальным уравнениям в проекции на Декартовы оси. Для этого нужно дифференцировать первые 3 канонических уравнения 9, решить их относительно px, pu, p и подставить найденные pn, p в последние 3 уравнения 9.Возьми н — СХ, ту — КР, м3 — автомат.
Уравнение 10 является проекцией векторного уравнения mw F, то есть mw — cg на Декартовы координатные оси. Задание 17.14, составьте стандартное уравнение движения свободных материальных точек массой m под действием центральной силы. Энергия положения равна P P g .Выбираем полярные координаты р и Р, так как они являются обобщенными. Решение.2 обобщенные координаты r и p соответствуют 2 сопряженным импульсам pg и pf .Они были рассчитаны в решении задачи 17.7 см. уравнение 5.Центральная сила F-это потенциал, и нет никакой связи, поэтому функция Гамильтона равна сумме механической энергии.
При наличии силы сопротивления движению, пропорциональной скорости ползуна, колебания с частотой свободных колебаний затухают и стрелка прибора регистрирует. Людмила Фирмаль
Используя уравнение кинетической энергии задачи 17.7 4, запишем Гг, Р, 1 р р.2 Здесь в функции надо необходимо выразить обобщенный импульс PN P и обобщенные скорости T и относительно координат R, P .используя формулу в вопросе 17.7 5 И затем Канонические уравнения В этом деле Получим искомое стандартное уравнение для движения точки масс путем возведения значения функции Гамильтона 3 в уравнение 4.4 RFE RL п н г доктор РФ 0.Задача 17.16.Если P-его вес, то для составления стандартного уравнения движения физического маятника, 1g — момент инерции к оси усиления, r, OS a-расстояние от точки усиления O до центра. Л По вопросу 17.15.Тяжесть от маятника см. фото. Игнорируйте 3-й.
Выберите угол поворота p в качестве обобщенной координаты. Решение. Маятник представляет собой систему с 1 степенью свободы, так как его положение определяется углом наклона rotation .To вычислите сопряженный обобщенный импульс rf, опишите кинетическую энергию маятника. Т Л Р.1 Тогда мы получаем dT, для сопряженного обобщенного импульса. РЗ ИБ м от 2 3 Единственная действующая сила-гравитация Р — это потенциал, а связь-ось усиления-идеальна и неподвижна.
Таким образом, функция Гамильтон равен полной механической энергии маятника Я Г П 4 Потенциальная энергия маятника П пу — Пасуш п.5 Если ввести результат 1 и 5 в Формулу 4 Y4Ф2-Pa cos p. 6 Напомним, что эта формула для H не может быть использована для создания канонического уравнения, так как Гамильтонова функция должна быть выражена в соответствии с обобщенными координатами и импульсом. Используйте уравнение 3, чтобы исключить обобщенную скорость из уравнения 6.2 РЧ-Ра со Ф.7 В этом случае форма канонического уравнения имеет вид День ду Введя значение функции Гамильтона 8 в уравнение 7, получим искомое уравнение движения физического маятника.— peslnqi.
Стандартное уравнение 9 эквивалентно 2-му-1-му дифференциальному уравнению. Первое уравнение 9 получается путем дифференцирования по времени и исключения rf из 2-го уравнения 9 дифференциального уравнения качания маятника. РФ — па грех Ф. Задача 17.16.Используйте каноническое уравнение Гамильтона для получения закона сохранения полной механической энергии.
По формуле, приведенной в подразделе 2 этого раздела 5, было показано, что Гамильтонова функция H в случае голономной системы зависит, вообще говоря, от времени, обобщенных координат, обобщенного импульса. ГБ Пи, 1 Где 1 1, 2, .. S — число степеней свободы в материальной системе. Вычислить производную по времени функции 1 dh dn. ОТЛИЧИТЕЛЬНОЕ ИМЯ. День. День. .отличительное имя. День. День Используя нормальное уравнение Он также заменяет p Формулы 2.З.
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Функция Лагранжа. Уравнения Лагранжа. Интегралы движения.Скачать
Принцип наименьшего действия в аналитической механике
Причина данной публикации — неоднозначная статья на тему принципа наименьшего действия (ПНД), опубликованная на ресурсе несколько дней назад. Неоднозначна она потому, что её автор в популярной форме пытается донести до читателя один из основополагающих принципов математического описания природы, и это частично ему удается. Если бы не одно но, притаившееся в конце публикации. Под спойлером приведена полная цитата данного отрывка
Видео:Задача: из лагранжиана в гамильтониан.Интегрирование уравнений движения.Случай одной степени свободыСкачать
Не все так просто
На самом деле я немного обманул, сказав, что тела всегда двигаются так, чтобы минимизировать действие. Хотя в очень многих случаях это действительно так, можно придумать ситуации, в которых действие явно не минимально.
Например, возьмем шарик и поместим его в пустое пространство. На некотором отдалении от него поставим упругую стенку. Допустим, мы хотим, чтобы через некоторое время шарик оказался в том же самом месте. При таких заданных условиях шарик может двигаться двумя разными способами. Во-первых, он может просто оставаться на месте. Во-вторых, можно его толкнуть по направлению к стенке. Шарик долетит до стенки, отскочит от нее и вернется обратно. Понятно, что можно толкнуть его с такой скоростью, чтобы он вернулся в точно нужное время.
Оба варианта движения шарика возможны, но действие во втором случае получится больше, потому что все это время шарик будет двигаться с ненулевой кинетической энергией.
Как же спасти принцип наименьшего действия, чтобы он был справедлив и в таких ситуациях? Об этом мы поговорим в следующий раз.
Так в чем же, с моей точки зрения, проблема?
Проблема в том, что автор, приводя данный пример допустил ряд фундаментальных ошибок. Она усугубляется тем, что планируемая вторая часть, со слов автора, будет опираться на эти ошибки. Руководствуясь принципом наполнения ресурса достоверной информацией я вынужден выступить с разъяснением своей позиции по данному вопросу более развернуто, и формат комментариев для этого маловат.
Данная статья расскажет о том, как строится механика на базе ПНД, и постарается объяснить читателю, что проблема, которую ставит автор цитируемой публикации отсутствует.
Видео:Кугушев Е. И. - Аналитическая механика - Случай Лагранжа. Уравнения ГамильтонаСкачать
1. Определение действия по Гамильтону. Принцип наименьшего действия
— функция Лагранжа, для некоторой механической системы, в которой (опуская аргументы в дальнейшем) T — кинетическая энергия системы; П — потенциальная её энергия; q(t) — вектор обобщенных координат этой системы, являющийся функцией времени. при этом полагают, что моменты времени t1 и t2 — фиксированы.
Почему функционал, а не функция? Потому, что функция, по определению есть правило, по которому одному числу из области определения (аргументу функции) ставится в соответствие другое число из области значений. Функционал отличается тем, что качестве его аргумента выступает не число, а целая функция. В данном случае это закон движения механической системы q(t), определенный по крайней мере на промежутке времени между t1 и t2.
Многолетние (и это мягко сказано!) труды ученых-механиков (включая умопомрачительного Леонарда Эйлера), позволили сформулировать
Принцип наименьшего действия:
Механическая система, для которой задана функция Лагранжа , движется таким образом, что закон её движения q(t) доставляет минимум функционалу
называемому действием по Гамильтону.
Уже из самого определения ПНД следует тот факт, что данный принцип приводит к уравнениям движения лишь для ограниченного класса механических систем. Для каких? А давайте разберемся.
Видео:Степаньянц К. В. - Теоретическая механика II - Гамильтонова механика. Функция и уравнение ГамильтонаСкачать
2. Границы применимости принципа наименьшего действия. Некоторые определения для самых маленьких
Как следует из определения, опять таки, функции Лагранжа, ПНД позволяет получить уравнения движения для механических систем, силовое воздействие на которые определяется исключительно потенциальной энергией. Для того чтобы разобраться, о каких системах идет речь, дадим несколько определений, которые, для экономии объема статьи я помещаю под спойлер
Рассмотрим движущуюся по траектории AB точку, к которой приложена сила . Бесконечно малое перемещение точки по траектории определяется вектором , направленным по касательной к траектории.
Элементарной работой силы на перемещении называют скалярную величину, равную
Тогда, полная работа силы на перемещении точки по траектории AB есть криволинейный интеграл
Кинетической энергией точки T называют работу, которую должны совершить приложенные к точке массой m силы, для того чтобы из состояния покоя перевести точку в движение со скоростью
В соответствии со вторым законом Ньютона
Вычислим строго стоящее под знаком интеграла скалярное произведение, для чего продифференцируем по времени скалярное произведение вектора скорости самого на себя
С другой стороны,
Дифференцируя это равенство по времени, имеем
Сравнивая (1) и (2) приходим к выводу, что
Тогда, спокойно вычисляем работу, раскрывая криволинейный интеграл через определенный, взяв в качестве пределов модуль скорости точки в начале и в конце траектории
Пусть точка перемещается в пространстве по произвольной траектории AB. Вычислим, какую работу при этом совершит сила (3)
Так как проекции силы на оси координат зависят исключительно от этих самых координат, всегда можно найти функцию
Тогда, выражение для работы преобразуется к виду
где — значения функции U(x, y, z) в точках A и B соответственно. Таким образом работа рассматриваемой нами силы не зависит от траектории точки, а определяется только значениями функции U в начале и в конце траектории. Такая сила называется консервативной силой, а соответствующая ей функция U(x, y, z) — силовой функцией. Очевидно, что , а так же равенство нулю работы консервативной силы при движении по замкнутой траектории. Говорят так же, что функция U(x, y, z) задает в пространстве силовое поле.
Потенциальной энергией точки, в пространстве с заданным силовым полем, называют работу внешних сил, приложенных к ней, которую они совершают при перемещении точки в заданное координатами (x, y, z) положение в пространстве из некоторого произвольного положения, выбранного в качестве начала отсчета уровня потенциальной энергии.
— потенциальная энергия точки в положении A, а
— потенциальная энергия точки в положении B. Учитывая всё вышесказанное снова вычислим работу потенциальных сил на перемещении из точки A в точку B
Таким образом, работа консервативных сил равна изменению потенциальной энергии точки, взятому с обратным знаком
причем выбор уровня, на котором мы считаем потенциальную энергию равной нулю совершенно не влияет на результат. Отсюда можно сделать вывод, что уровень отсчета потенциальной энергии можно выбрать совершенно произвольно.
Видео:Уравнения Лагранжа второго родаСкачать
3. Понятие о вариациях обобщенных координат. Постановка вариационной задачи
где s — число степеней свободы данной системы.
Действительный, но неизвестный пока нам, закон движения данной системы определяется зависимость обобщенных координат (4) от времени. Рассмотрим одну из обобщенных координат , полагая аналогичные рассуждения и для всех остальных координат.
Рисунок 1. Действительное и окольное движение механической системы
На рисунке зависимость изображена красной кривой. Выберем два произвольных фиксированных момента времени t1 и t2, полагая t2 > t1. Положение системы договоримся называть начальным положением системы, а — конечным положением системы.
Однако, я ещё раз настаиваю на том, чтобы нижеследующий текст был прочтен внимательно! Несмотря на то, что мы задаемся начальным и конечным положением системы, ни первое положение, ни второе, нам заранее неизвестны! Равно как и неизвестен закон движения системы! Эти положения рассматриваются именно как начальное и конечное положение, безотносительно конкретных значений.
Далее мы полагаем, что из начального положения в конечное система может придти разными путями, то есть зависимость может быть любой кинематически возможной. Действительное движение системы будет существовать в единственном варианте (красная кривая), остальные кинематически возможные варианты будем называть окольными движениями (синяя кривая на рисунке). Разность между действительным и окольным движением
будем называть изохронными вариациями обобщенных координат
В данном контексте вариации (5) следует понимать как бесконечно малые функции, выражающие отклонение окольного движения от действительного. Малая «дельта» для обозначения выбрана не случайно и подчеркивает принципиальное отличие вариации от дифференциала функции. Дифференциал — главная линейная часть приращения функции, вызванного приращением аргумента. В случае с вариацией изменение значения функции при постоянном значении аргумента вызвано изменением вида самой функции! Мы не варьируем аргумент, в роли которого выступает время, поэтому вариация называется изохронной. Мы варьируем правило по которому каждому значению времени приводится в соответствие некоторое значение обобщенных координат!
По сути, мы варьируем закон движения, по которому система из начального состояния перемещается в конечное состояние. Начальное и конечное состояние определяются действительным законом движения, но я ещё раз подчеркиваю — их конкретные значения нам не известны и могут быть любыми кинематически возможными, мы лишь полагаем, что они существуют и система гарантированно перемещается из одного положения в другое! В начальном и конечном положении системы мы не варьируем закон движения, поэтому вариации обобщенных координат в начальном и конечном положении равны нулю
Исходя из принципа наименьшего действия, действительное движение системы должно быть таким, чтобы доставлять минимум функционалу действия. Варьирование координат вызывает изменение функционала действия. Необходимым условием достижения функционалом действия экстремального значения является равенство нулю его вариации
Видео:Функция Лагранжа. Обобщенные импульсы. Функция Гамильтона. Гамильтониан консервативной системы.Скачать
4. Решение вариационной задачи. Уравнения Лагранжа 2-го рода
Загоним всё под один интеграл, и так как для вариаций справедливы все операции над бесконечно малыми величинами, преобразуем этот крокодил к виду
Исходя из определения обобщенной скорости
Тогда выражение (8) преобразуется к виду
Второе слагаемое интегрируется по частям
Исходя из условия (7), имеем
тогда, получаем уравнение
При произвольных пределах интегрирования равенство нулю определенного интеграла обеспечивается равенством нулю подынтегральной функции
С учетом того, что вариации обобщенных координат независимы, (11) справедливо только в случае равенства нулю всех коэффициентов при вариациях, то есть
Никто не мешает нам умножить каждое из уравнений на (-1) и получить более привычную запись
Уравнения (12) и есть решение задачи. И вот на этом моменте ещё раз внимание — решение вариационной задачи по принципу наименьшего действия, это не функция, доставляющая минимум действию по Гамильтону, а система дифференциальных уравнений, решая которое таковую функцию можно найти. В данном случае это дифференциальное уравнение Лагранжа 2-го рода, записанное через функцию Лагранжа, то есть в формулировке для консервативных механических систем.
И всё, на этом принцип наименьшего действия заканчивается, а начинается теория обыкновенных дифференциальных уравнений, которая, в частности, гласит, что решением уравнения (12) является вектор-функция вида
где C1. C2s — произвольные константы интегрирования.
ПНД — фундаментальный принцип, позволяющий получить уравнения движения системы, для которой определена функция Лагранжа
Точка! В задачах аналитической механики вышеперечисленные выкладки больше не нужно проделывать, достаточно использовать их результат (12). Функция, удовлетворяющая уравнению (12) есть закон движения системы, удовлетворяющей ПНД.
Видео:Форш П. А. - Теоретическая механика - Интегрирование уравнений движения. Одномерное движениеСкачать
5. Задача с шариком и стенкой
Теперь вернемся к той задаче, с которой всё началось — об одномерном движении шарика около абсолютно упругой стенки. Разумеется, для данной задачи можно получить дифференциальные уравнения движения. Так как это дифференциальные уравнения движения, то любое, я подчеркиваю это, любое их решение доставляет минимум функционалу действия, а значит ПНД выполняется! Общее решение уравнений движения шарика можно изобразить в виде так называемого фазового портрета рассматриваемой механической системы. Вот этот фазовый портрет
Рисунок 2. Фазовый портрет системы в задаче с шариком
По горизонтальной оси откладывается координата шарика, по вертикальной — проекция скорости на ось x. Может это покажется странным, но данный чертеж отражает все возможные фазовые траектории движения шарика, при любых начальных, или если вам так хочется, краевых условиях. На самом деле параллельных прямых на графике бесконечно много, на чертеже показаны некоторые из них и направление движения по фазовой траектории.
Это — общее решение уравнения движения шарика. Каждая из этих фазовых траекторий доставляет минимум функционалу действия, что непосредственно следует из выкладок, проделанных выше.
Что делает автор задачи? Он говорит: вот шарик покоится, и за промежуток времени от tA до tB действие равно нулю. Если шарик толкнуть к стенке, то за тот же промежуток времени действие будет больше, так как у шарика отличная от нуля и неизменная кинетическая энергия. Но почему шарик движется к стенке, ведь в покое действие будет меньше? Значит ПНД испытвает проблемы и не работает! Но мы обязательно решим это в следующей статье.
То что говорит автор — бред. Почему? Да потому, что он сравнивает действия на различных ветвях одной и той же действительной фазовой траектории! Между тем, при применении ПНД, сравнивается действие на действительной траектории и на множестве окольных траекторий. То есть происходит сравнение действия на реальной траектории с действием на тех траекториях, которых нет в природе, и никогда не будет!
Не понятно? Объясню ещё более доходчиво. Рассмотрим состояние покоя. Оно описывается ветвью фазового портрета, совпадающего с осью абсцисс. Координата не меняется с течением времени. Это действительное движение. А какое же движение будет окольным. Любое другое кинематически возможное. Например малые колебания шарика около рассматриваемого нами положения покоя. Задача допускает колебания шарика вдоль оси х? Допускает, значит такое движение кинематически возможно и может рассматриваться как одно их окольных
Почему же шарик таки покоится? Да потому, что действие в состоянии покоя, вычисленное на фиксированном промежутке времени от tA до tB, будет меньше действия, при малых колебаниях на том же промежутке времени. Значит колебаниям и любому другому «шевелению» шарика природа предпочитает покой. В полном соответствии с ПНД.
Допустим мы толкнули шарик в сторону стенки. Пусть мы толкнули его как хочет автор, со скоростью, подобранной из краевых условий, так чтобы в момент времени tB шарик оказался в том же положении, откуда стартовал. Шарик, с постоянной скоростью долетит до стенки, упруго отскочит и вернется в начальное положение в момент времени tB, опять таки с постоянной скоростью. Ок, это действительное движение. Какое движение будет одним из окольных? Например, если шарик будет двигаться к стенке и от стенки со скоростью, меняющейся со временем. Такое движение возможно кинематически? Возможно. Почему же модуль скорости шарика не меняется? Да потому, что действие на такой фазовой траектории будет иметь минимальное значение, в сравнении с любом другим вариантом, где скорость зависит от времени.
Вот и всё. Ничего такого волшебного тут не происходит. ПНД работает безо всяких проблем.
Видео:Теоретическая механика. Элементы аналитической механики.Скачать
Выводы и пожелания
ПНД — фундаментальный закон природы. Из него, в частности, вытекают законы механики, например дифференциальные уравнения движения (12). ПНД говорит нам о том, что природа устроена так, что уравнение движения консервативной механической системы выглядит именно как выражение (12) и никак иначе. Большего от него и не требуется.
Не нужно придумывать проблем там где их нет.
Видео:Механика №11. Уравнения Гамильтона.Скачать
ВАРИАЦИОННЫЕ ПРИНЦИПЫ И АНАЛИТИЧЕСКАЯ МЕХАНИКА
Видео:Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.Скачать
КАНОНИЧЕСКИЕ УРАВНЕНИЯ ГАМИЛЬТОНА. ПЕРВЫЕ ИНТЕГРАЛЫ
Уравнения Лагранжа второго рода содержат вторые производные обобщенных координат. Зададимся целью преобразовать уравнения Лагранжа к форме Коши, т.е. к такому виду, когда левые части уравнений суть первые производные искомых величин, а правые — их функции. Новая форма уравнений движения более удобна при исследовании свойств движения, как будет видно из дальнейшего.
Введем новые переменные — канонические импульсы
Формулы (1.1) определяют преобразование Лежандра — замену переменных q -> р, р = (р. ря), q = (. Функция Лагранжа L(q, q, /) выступает в роли производящей функции преобразования. Поскольку (см. §4.9)
и det А (q, Oil > 0, преобразование Лежандра (1.1) в явном виде задается соотношением р = Aq + b и всегда существует обратное преобразование ч = А»(р-Ь). Таким образом, преобразование Лежандра (1.1) является взаимно однозначным и определяет замену переменных. Обратная замена переменных р-поможет быть представлена как преобразование Лежандра с производящей функцией
Во второй строке члены, содержащие dq , взаимно уничтожаются в силу соотношений (1.1). Сравнивая коэффициенты в двух выражениях дифференциала dH, получим соотношения
первое из которых и есть обратное преобразование Лежандра. Функция //(р, q, 0 называется функцией Гамильтона.
Уравнения Лагранжа второго рода
с учетом соотношений (1.1) и (1.3) переписываются в виде р = -VqH и совместно с первым уравнением (1.3) образуют систему канонических уравнений Гамильтона
Система дифференциальных уравнений (1.4) имеет порядок 2п. разрешена относительно первых производных и задает фазовый поток — преобразование 2л-мерного фазового пространства переменных (в. а1 в себя, оппелеляемого общим пешением упавнений (1 43
Здесь (р0, q0) — начальные условия — обобщенные импульсы и координаты в момент времени 1 = 0. Пространство переменных (р, q, I) размерности 2п+ 1 называется расширенным фазовым пространством. Как и прежде, правые части уравнений (1.4) удовлетворяют теореме существования и единственности решений (например, непрерывны вместе со своими частными производными по всем переменным).
Свойства канонических уравнений Гамильтона
- 1. Если координата q; циклическая, т.е. dL/dq^O, то Р, = Р/о — первый интеграл уравнений движения (1.4).
- ? Из условия dL/dqj = 0 следует, что и dH/dqf=0 (см. (1.3)) и далее = 0. ?
Наличие одной циклической координаты понижает порядок системы канонических уравнений на две единицы. Функция Гамильтона в этом случае не зависит от переменной qjy а переменная Pj постоянна и равна своему начальному значению. Уравнения Q.0 + А)(Ч>О, где /.*,* = О, 1,2 — однородные функции Эйлера соответствующих порядков по переменной q, то
и Н= L2— Lq= Т2— Т0— U. В случае, когда связи стационарны (Г, = Го = 0), а силы консервативны U=-V( = 0 (обруч неподвижен), то получаем задачу о движении математического маятника (см. § 3.13), а написанный выше интеграл становится просто законом сохранения энергии.
🔥 Видео
Аналитическая механика | функционал Лагранжа | 1Скачать
Уравнения Лагранжа | Теоретическая механика | Сергей СемендяевСкачать
Уравнения и графики механических гармонических колебаний. 11 класс.Скачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Уравнения Лагранжа второго рода. Задача 1Скачать
Дифференциальное уравнение Лагранжа II рода. Расчет механической системы.Скачать
Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать
Принцип наименьшего действия #2 - Уравнение Эйлера-ЛагранжаСкачать
Задача на составление уравнения Лагранжа 2-го родаСкачать