Найти экстремальные значения функции неявно заданной уравнением

Примеры решений задач: функции нескольких переменных

В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:

Видео:18+ Математика без Ху!ни. Производная неявной функции.Скачать

18+ Математика без Ху!ни. Производная неявной функции.

Примеры: область определения ФНП

Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.

Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.

Видео:27. Дифференцирование неявной функции двух переменныхСкачать

27. Дифференцирование неявной функции двух переменных

Примеры: частные производные ФНП

Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$

Задача 4. Найти частные производные второго порядка $z=sqrt$

Задача 5. Найти частные производные сложной функции:

$$ z=u^2 cdot ln v; quad u=frac, , v=x^2+y^2.$$

Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.

Задача 7. Найти полный дифференциал данной функции

Задача 8. Найти дифференциал второго порядка функции:

Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $sin(xz)+cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.

Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.

Видео:11. Производная неявной функции примерыСкачать

11. Производная неявной функции примеры

Градиент, производная по направлению

Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $overline$. Вычислить наибольшую скорость изменения функции в данной точке.

Задача 13. Найдите градиент, производную по направлению $overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $overline=$, $M(1,3,1)$.

Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.

Видео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать

АЛГЕБРА С НУЛЯ — Точки Экстремума Функции

Касательная плоскость и нормаль

Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.

Задача 16. Для кривой $overline=overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.

$$ overline(t)=(t^2-3)overline + (t^3+2)overline+ln t overline, quad t_0=1 $$

Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.

Видео:Консультация: экстремумы у неявно-заданной функцииСкачать

Консультация: экстремумы у неявно-заданной функции

Экстремумы функции нескольких переменных

Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.

Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.

Задача 20. Исследовать на экстремум функцию $z=x^4+xy+fracy^2+5$.

Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.

Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.

Видео:Математика без Ху!ни. Экстремум функции 2х переменных.Скачать

Математика без Ху!ни. Экстремум функции 2х переменных.

Приближенные вычисления

Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.

Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.

Видео:Производная неявной функцииСкачать

Производная неявной функции

Ряд Тэйлора

Задача 25. Разложите функцию $f(x,y)=x^2ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.

Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.

Видео:Первая и вторая производная неявной функцииСкачать

Первая и вторая производная неявной функции

Наибольшее и наименьшее значение в области

Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 le x le 1; 0le y le 2$. Сделать чертёж области $D$.

Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.

Видео:Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

Решение контрольной

Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.

Видео:Экстремум функции двух переменныхСкачать

Экстремум функции двух переменных

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Видео:[Calculus | глава 6] Неявное дифференцирование — что здесь происходит?Скачать

[Calculus | глава 6] Неявное дифференцирование — что здесь происходит?

Найти экстремальные значения функции неявно заданной уравнением

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Математика Без Ху!ни. Производная функции, заданной параметрически.Скачать

Математика Без Ху!ни. Производная функции, заданной параметрически.

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y) f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Видео:Найти точки экстремума функцииСкачать

Найти точки экстремума функции

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $frac$ и $frac$. Составить и решить систему уравнений $ left < begin& frac=0;\ & frac=0. end right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $frac$, $frac$, $frac$ и вычислить значение $Delta=fraccdot frac-left(fracright)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $Delta > 0$ и $frac> 0$ (или $frac> 0$), то в исследуемая точка есть точкой минимума.
    2. Если $Delta > 0$ и $frac0$, то $fraccdot frac-left(fracright)^2 > 0$. А отсюда следует, что $fraccdot frac> left(fracright)^2 ≥ 0$. Т.е. $fraccdot frac> 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $frac> 0$, то и $frac> 0$. Короче говоря, если $Delta > 0$ то знаки $frac$ и $frac$ совпадают.

    Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

    Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

    Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Вычислим значение $Delta$:

    Так как $Delta > 0$ и $frac > 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

    $$ z_=z(2;-3)=4cdot 2^2-6cdot 2 cdot (-3)-34cdot 2+5cdot (-3)^2+42cdot (-3)+7=-90. $$

    Ответ: $(2;-3)$ – точка минимума; $z_=-90$.

    Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим первое уравнение на 3, а второе – на 6.

    Если $x=0$, то второе уравнение приведёт нас к противоречию: $0cdot y-2=0$, $-2=0$. Отсюда вывод: $xneq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=frac$. Подставляя $y=frac$ в первое уравнение, будем иметь:

    Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

    Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=frac$, получим:

    Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем:

    Так как $Delta(M_1) 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    $$ z_=z(2;1)=2^3+3cdot 2cdot 1^2-15cdot 2-12cdot 1+1=-27. $$

    Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

    Так как $Delta(M_4) > 0$ и $left.fracright|_ 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа 🙂

    Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

    Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

    Сократим оба уравнения на $4$:

    Добавим к второму уравнению первое и выразим $y$ через $x$:

    Подставляя $y=-x$ в первое уравнение системы, будем иметь:

    Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-sqrt$ или $x=sqrt$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-sqrt$, $x_3=sqrt$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=sqrt$, $y_3=-x_3=-sqrt$.

    Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-sqrt,sqrt)$, $M_3(sqrt,-sqrt)$.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем:

    $$Delta(M_1)=16cdot((3cdot 0^2-1)(3cdot 0^2-1)-1)=16cdot 0=0.$$

    Так как $Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

    Исследуем точку $M_2(-sqrt,sqrt)$. В этой точке получим:

    Так как $Delta(M_2) > 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_2(-sqrt,sqrt)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

    Аналогично предыдущему пункту исследуем точку $M_3(sqrt,-sqrt)$. В этой точке получим:

    Так как $Delta(M_3) > 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_3(sqrt,-sqrt)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    Настал черёд вернуться к точке $M_1(0;0)$, в которой $Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается «делайте, что хотите» :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) 3$? Тогда в точке $M_1$ точно не будет максимума.

    Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

    $$ z(x,x)=x^4+x^4-2x^2+4xcdot x-2cdot x^2+3=2x^4+3. $$

    Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

    Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

    Ответ: $(-sqrt,sqrt)$, $(sqrt,-sqrt)$ – точки минимума функции $z$. В обеих точках $z_=-5$.

    Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

    📸 Видео

    Семинар 2. Экстремумы функций многих переменных.Скачать

    Семинар 2. Экстремумы функций многих переменных.

    Математический анализ, 31 урок, Дифференцирование сложных и неявных функцийСкачать

    Математический анализ, 31 урок, Дифференцирование сложных и неявных функций

    Как находить производную неявной функции - bezbotvyСкачать

    Как находить производную неявной функции - bezbotvy

    19. Производная второго порядка неявной функцииСкачать

    19. Производная второго порядка неявной функции

    Обратная функция. 10 класс.Скачать

    Обратная функция. 10 класс.

    Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

    Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline
    Поделиться или сохранить к себе:
Найти экстремальные значения функции неявно заданной уравнением