Найти экстремальные значения функции неявно заданной уравнением

Примеры решений задач: функции нескольких переменных

В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:

Видео:27. Дифференцирование неявной функции двух переменныхСкачать

27. Дифференцирование неявной функции двух переменных

Примеры: область определения ФНП

Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.

Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.

Видео:11. Производная неявной функции примерыСкачать

11. Производная неявной функции примеры

Примеры: частные производные ФНП

Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$

Задача 4. Найти частные производные второго порядка $z=sqrt$

Задача 5. Найти частные производные сложной функции:

$$ z=u^2 cdot ln v; quad u=frac, , v=x^2+y^2.$$

Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.

Задача 7. Найти полный дифференциал данной функции

Задача 8. Найти дифференциал второго порядка функции:

Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $sin(xz)+cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.

Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.

Видео:18+ Математика без Ху!ни. Производная неявной функции.Скачать

18+ Математика без Ху!ни. Производная неявной функции.

Градиент, производная по направлению

Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $overline$. Вычислить наибольшую скорость изменения функции в данной точке.

Задача 13. Найдите градиент, производную по направлению $overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $overline=$, $M(1,3,1)$.

Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.

Видео:Консультация: экстремумы у неявно-заданной функцииСкачать

Консультация: экстремумы у неявно-заданной функции

Касательная плоскость и нормаль

Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.

Задача 16. Для кривой $overline=overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.

$$ overline(t)=(t^2-3)overline + (t^3+2)overline+ln t overline, quad t_0=1 $$

Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.

Видео:Математика без Ху!ни. Экстремум функции 2х переменных.Скачать

Математика без Ху!ни. Экстремум функции 2х переменных.

Экстремумы функции нескольких переменных

Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.

Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.

Задача 20. Исследовать на экстремум функцию $z=x^4+xy+fracy^2+5$.

Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.

Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.

Видео:Производная неявной функцииСкачать

Производная неявной функции

Приближенные вычисления

Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.

Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.

Видео:Первая и вторая производная неявной функцииСкачать

Первая и вторая производная неявной функции

Ряд Тэйлора

Задача 25. Разложите функцию $f(x,y)=x^2ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.

Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.

Видео:АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать

АЛГЕБРА С НУЛЯ — Точки Экстремума Функции

Наибольшее и наименьшее значение в области

Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 le x le 1; 0le y le 2$. Сделать чертёж области $D$.

Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.

Видео:Найти точки экстремума функцииСкачать

Найти точки экстремума функции

Решение контрольной

Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.

Видео:Экстремум функции двух переменныхСкачать

Экстремум функции двух переменных

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Видео:[Calculus | глава 6] Неявное дифференцирование — что здесь происходит?Скачать

[Calculus | глава 6] Неявное дифференцирование — что здесь происходит?

Найти экстремальные значения функции неявно заданной уравнением

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y) f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Видео:Математика Без Ху!ни. Производная функции, заданной параметрически.Скачать

Математика Без Ху!ни. Производная функции, заданной параметрически.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $frac$ и $frac$. Составить и решить систему уравнений $ left < begin& frac=0;\ & frac=0. end right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $frac$, $frac$, $frac$ и вычислить значение $Delta=fraccdot frac-left(fracright)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $Delta > 0$ и $frac> 0$ (или $frac> 0$), то в исследуемая точка есть точкой минимума.
    2. Если $Delta > 0$ и $frac0$, то $fraccdot frac-left(fracright)^2 > 0$. А отсюда следует, что $fraccdot frac> left(fracright)^2 ≥ 0$. Т.е. $fraccdot frac> 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $frac> 0$, то и $frac> 0$. Короче говоря, если $Delta > 0$ то знаки $frac$ и $frac$ совпадают.

    Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

    Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

    Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Вычислим значение $Delta$:

    Так как $Delta > 0$ и $frac > 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

    $$ z_=z(2;-3)=4cdot 2^2-6cdot 2 cdot (-3)-34cdot 2+5cdot (-3)^2+42cdot (-3)+7=-90. $$

    Ответ: $(2;-3)$ – точка минимума; $z_=-90$.

    Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим первое уравнение на 3, а второе – на 6.

    Если $x=0$, то второе уравнение приведёт нас к противоречию: $0cdot y-2=0$, $-2=0$. Отсюда вывод: $xneq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=frac$. Подставляя $y=frac$ в первое уравнение, будем иметь:

    Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

    Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=frac$, получим:

    Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем:

    Так как $Delta(M_1) 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    $$ z_=z(2;1)=2^3+3cdot 2cdot 1^2-15cdot 2-12cdot 1+1=-27. $$

    Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

    Так как $Delta(M_4) > 0$ и $left.fracright|_ 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа 🙂

    Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

    Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

    Сократим оба уравнения на $4$:

    Добавим к второму уравнению первое и выразим $y$ через $x$:

    Подставляя $y=-x$ в первое уравнение системы, будем иметь:

    Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-sqrt$ или $x=sqrt$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-sqrt$, $x_3=sqrt$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=sqrt$, $y_3=-x_3=-sqrt$.

    Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-sqrt,sqrt)$, $M_3(sqrt,-sqrt)$.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем:

    $$Delta(M_1)=16cdot((3cdot 0^2-1)(3cdot 0^2-1)-1)=16cdot 0=0.$$

    Так как $Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

    Исследуем точку $M_2(-sqrt,sqrt)$. В этой точке получим:

    Так как $Delta(M_2) > 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_2(-sqrt,sqrt)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

    Аналогично предыдущему пункту исследуем точку $M_3(sqrt,-sqrt)$. В этой точке получим:

    Так как $Delta(M_3) > 0$ и $left.fracright|_ > 0$, то согласно алгоритму $M_3(sqrt,-sqrt)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    Настал черёд вернуться к точке $M_1(0;0)$, в которой $Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается «делайте, что хотите» :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) 3$? Тогда в точке $M_1$ точно не будет максимума.

    Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

    $$ z(x,x)=x^4+x^4-2x^2+4xcdot x-2cdot x^2+3=2x^4+3. $$

    Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

    Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

    Ответ: $(-sqrt,sqrt)$, $(sqrt,-sqrt)$ – точки минимума функции $z$. В обеих точках $z_=-5$.

    Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

    📹 Видео

    Обратная функция. 10 класс.Скачать

    Обратная функция. 10 класс.

    Семинар 2. Экстремумы функций многих переменных.Скачать

    Семинар 2. Экстремумы функций многих переменных.

    Как находить производную неявной функции - bezbotvyСкачать

    Как находить производную неявной функции - bezbotvy

    19. Производная второго порядка неявной функцииСкачать

    19. Производная второго порядка неявной функции

    Математический анализ, 31 урок, Дифференцирование сложных и неявных функцийСкачать

    Математический анализ, 31 урок, Дифференцирование сложных и неявных функций

    Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

    Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline
    Поделиться или сохранить к себе:
Найти экстремальные значения функции неявно заданной уравнением