Найти базис подпространства заданного уравнением

Видео:Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Способы описания подпространств линейного пространства

Рассмотрим два важных способа описания линейных подпространств, которые условно будем называть внутренним и внешним. В первом (внутреннем) способе используется понятие линейной оболочки векторов, когда все элементы подпространства выражаются через некоторые его элементы (образующие). При втором (внешнем) способе применяются однородные системы уравнений. В этом случае подпространство описывается как пересечение некоторых содержащих его множеств. Для каждого способа описания подпространств укажем методики на хождения размерностей, базисов, алгебраических дополнений, пересечений и сумм подпространств.

Любое n-мерное вещественное линейное пространство изоморфно n-мерному арифметическому пространству . Чтобы установить изоморфизм , достаточно выбрать в пространстве базис и каждому вектору поставить в соответствие его координатный столбец. Поэтому в данном разделе будем рассматривать описание подпространств n-мерного арифметического пространства .

Первый (внутренний) способ. Пусть в пространстве заданы столбцы . Напомним, что для систем столбцов были определены понятия базы (максимальной линейно независимой подсистемы столбцов) и ранга (максимального числа линейно не зависимых столбцов системы), а также методы их нахождения.

Рассматривая линейную оболочку столбцов как линейное подпространство , заключаем, что база системы столбцов является базисом этого подпространства, а ранг системы столбцов равен размерности подпространства .

Поэтому для нахождения размерности и базиса подпространства нужно выполнить следующие действия:

1) составить из данных столбцов матрицу размеров ;

2) привести ее к ступенчатому виду (1.4), используя элементарные преобразования строк;

3) определить размерность и базис подпространства

– количество ненулевых строк в матрице равняется размерности подпространства, т.е. ,

– столбцы матрицы , содержащие единичные элементы (в начале каждой «ступеньки»), определяют номера линейно независимых столбцов матрицы , т.е. искомый базис.

Таким образом, если подпространство задано своими образующими , то его размерность равна рангу системы столбцов , т.е. , а базисом служит максимальная линейно независимая подсистема образующих.

Второй (внешний) способ. Пусть подпространство задано как множество решений однородной системы уравнений с неизвестными. Множество решений системы уравнений можно рассматривать как пересечение подпространств , где — множество решений i-го уравнения системы . Напомним, что любое решение однородной системы представляется в виде линейной комбинации элементов фундаментальной системы решений. Поэтому раз мерность пространства , а базисом служит фундаментальная система решений однородной системы . Способы нахождения фундаментальной системы решений рассмотрены ранее.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Переход от одного способа описания подпространств к другому

Переход от внутреннего описания к внешнему. Пусть подпространство задано линейной оболочкой столбцов . Требуется составить такую однородную систему уравнений, множество решений которой совпадает с , т.е. . Для этого нужно выполнить следующие действия.

1. Из данных столбцов составить матрицу размеров , а затем блочную матрицу , приписав к матрице единичную матрицу n-го порядка.

2. Элементарными преобразованиями над строками блочной матрицы и первыми ее столбцами привести матрицу к виду , где — простейший вид матрицы .

3. Из последних строк матрицы составить матрицу .

4. Записать искомую систему уравнений .

Поясним содержание алгоритма. Заданное подпространство состоит из линейных комбинаций данных векторов, т.е. все его элементы имеют вид . Решаемую задачу можно сформулировать так: для каких векторов найдутся такие числа , чтобы выполнялось равенство . Другими словами, при каких неоднородная система ( уравнений с неизвестными ) имеет решения? Используя необходимое и достаточное условие (5.24) совместности системы, получаем равенство . Заметим, что решение поставленной задачи неоднозначно, так как существует много однородных систем, имеющих од но и то же множество решений.

Пример 8.8. Подпространство задано линейной оболочкой столбцов . Составить систему уравнений, определяющую подпространство .

Решение. 1. Составляем матрицу и блочную матрицу:

2. Приводим левый блок к простейшему виду. Вычитаем первую строку из остальных, а затем к четвертой строке прибавляем вторую, умноженную на (-2):

Преобразовываем столбцы левого блока: ко второму столбцу прибавим пер вый, умноженный на (-1), к третьему столбцу прибавим первый, умноженный на (-3), а затем второй, умноженный на (-1). Эти преобразования не изменяют правый блок полученной матрицы. Находим простейший вид Л матрицы и матрицу

3. Из последних строк матрицы составляем матрицу искомой системы.

4. Записываем систему уравнений Заданные в условии примера столбцы являются решениями полученной системы, в чем можно убедиться при их подстановке в систему уравнений вместо .

Переход от внешнего описания к внутреннему. Пусть подпространство задано как множество решений однородной системы т уравнений с л неизвестными: . Требуется найти размерность и базис этого подпространства, т.е. представить его в виде линейной оболочки . Для этого нужно выполнить следующие действия.

1. Найти фундаментальную систему решений однородной системы . Искомая размерность .

2. Представить заданное пространство как линейную оболочку .

Первый пункт алгоритма удобно выполнять следующим образом:

– составить блочную матрицу , приписав к матрице единичную матрицу n-го порядка;

– элементарными преобразованиями над столбцами блочной матрицы и строками верхнего блока привести матрицу к виду , где — простейший вид матрицы ;

– из последних столбцов матрицы составить фундаментальную матрицу .

Столбцы фундаментальной матрицы составляют искомую фундаментальную систему решений.

Заметим, что решение поставленной задачи неоднозначно, так как существует много базисов одного и того же линейного подпространства.

Пример 8.9. Найти размерность и базис подпространства , заданного системой уравнений

Решение. 1. Фундаментальная матрица для этой системы была найдена в примере 5.6

Ее столбцы образуют фундаментальную систему решений. Размерность подпространства равна , .

2. Столбцы являются искомым базисом, так как они линейно независимы и .

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Подпространство линейного пространства

Видео:3 1 Базис линейного пространстваСкачать

3 1  Базис линейного пространства

Определение и размерность подпространства

Определение 6.1. Подпространством L n-мерного пространства R называется множество векторов, образующих линейное пространство по отношению к действиям, которые определены в R.

Другими словами, L называется подпространством пространства R, если из x, y∈L следует, что x+y∈L и если x∈L, то λ x∈L, где λ— любое вещественное число.

Простейшим примером подпространства является нулевое подпространство, т.е. подмножество пространства R, состоящее из единственного нулевого элемента. Подпространством может служить и все пространство R. Эти подпространства называются тривиальными или несобственными.

Подпространство n-мерного пространства конечномерно и его размерность не превосходит n: dim L≤ dim R.

Видео:Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Сумма и пересечение подпространств

Пусть L и M — два подпространства пространства R.

Cуммой L+M называется множество векторов x+y, где x∈L и y∈M. Очевидно, что любая линейная комбинация векторов из L+M принадлежит L+M, следовательно L+M является подпространством пространства R (может совпадать с пространством R).

Пересечением LM подпространств L и M называется множество векторов, принадлежащих одновременно подпространствам L и M (может состоять только из нулевого вектора).

Теорема 6.1. Сумма размерностей произвольных подпространств L и M конечномерного линейного пространства R равна размерности суммы этих подпространств и размерности пересечения этих подпространств:

dim L+dim M=dim(L+M)+dim(L∩M).

Доказательство. Обозначим F=L+M и G=L∩M. Пусть G g-мерное подпространство. Выберем в нем базис Найти базис подпространства заданного уравнением. Так как GL и GM, следовательно базис G можно дополнить до базиса L и до базиса M. Пусть Найти базис подпространства заданного уравнениембазис подпространства L и пусть Найти базис подпространства заданного уравнениембазис подпространства M. Покажем, что векторы

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

составляют базис F=L+M. Для того, чтобы векторы (6.1) составляли базис пространства F они должны быть линейно независимы и любой вектор пространства F можно представить линейной комбинацией векторов (6.1).

Докажем линейную независимость векторов (6.1). Пусть нулевой вектор пространства F представляется линейной комбинацией векторов (6.1) с некоторыми коэффициентами:

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Левая часть (6.3) является вектором подпространства L, а правая часть является вектором подпространства M. Следовательно вектор

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

принадлежит подпространству G=L∩M. С другой стороны вектор v можно представить линейной комбинацией базисных векторов подпространства G:

Найти базис подпространства заданного уравнением

Из уравнений (6.4) и (6.5) имеем:

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Но векторы Найти базис подпространства заданного уравнениемявляются базисом подпространства M, следовательно они линейно независимы и Найти базис подпространства заданного уравнением. Тогда (6.2) примет вид:

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

В силу линейной независимости базиса подпространства L имеем:

Найти базис подпространства заданного уравнением

Так как все коэффициенты в уравнении (6.2) оказались нулевыми, то векторы

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

линейно независимы. Но любой вектор z из F (по определению суммы подпространств) можно представить суммой x+y, где x∈L, y∈M. В свою очередь x представляется линейной комбинацией векторов Найти базис подпространства заданного уравнениема y — линейной комбинацией векторовНайти базис подпространства заданного уравнением. Следовательно векторы (6.10) порождают подпространство F. Получили, что векторы (6.10) образуют базис F=L+M.

Изучая базисы подпространств L и M и базис подпространства F=L+M (6.10), имеем: dim L=g+l, dim M=g+m, dim (L+M)=g+l+m. Следовательно:

dim L+dim M−dim(L∩M)=dim(L+M). ■

Видео:4.1 Сумма и пересечение подпространств.Скачать

4.1 Сумма и пересечение подпространств.

Прямая сумма подпространств

Определение 6.2. Пространство F представляет собой прямую сумму подпространств L и M, если каждый вектор x пространства F может быть единственным способом представлен в виде суммы x=y+z, где y∈ L и z∈M.

Прямая сумма обозначается LM. Говорят, что если F=LM, то F разлагается в прямую сумму своих подпространств L и M.

Теорема 6.2. Для того, чтобы n-мерное пространство R представляло собой прямую сумму подпространств L и M, достаточно, чтобы пересечение L и M содержало только нулевой элемент и чтобы размерность R была равна сумме размерностей подпространств L и M.

Доказательство. Выберем некоторый базис Найти базис подпространства заданного уравнениемв подпространстве L и некоторый базис Найти базис подпространства заданного уравнениемв подпространстве M. Докажем, что

Найти базис подпространства заданного уравнением

является базисом пространства R. По условию теоремы размерность пространства R n равна сумме подпространств L и M (n=l+m). Достаточно доказать линейную независимость элементов (6.11). Пусть нулевой вектор пространства R представляется линейной комбинацией векторов (6.11) с некоторыми коэффициентами:

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Так как левая часть (6.13) является вектором подпространства L, а правая часть — вектором подпространства M и LM= 0, то

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Но векторы Найти базис подпространства заданного уравнениеми Найти базис подпространства заданного уравнениемявляются базисами подпространств L и M соответственно. Следовательно они линейно независимы. Тогда

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Установили, что (6.12) справедливо лишь при условии (6.15), а это доказывает линейную независимость векторов (6.11). Следовательно они образуют базис в R.

Пусть x∈R. Разложим его по базису (6.11):

Найти базис подпространства заданного уравнениемНайти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнением

Из (6.17) и (6.18) следует, что любой вектор из R можно представить суммой векторов x1L и x2M. Остается доказать что это представление является единственным. Пусть кроме представления (6.17) есть и следующее представление:

Найти базис подпространства заданного уравнением

Вычитая (6.19) из (6.17), получим

Найти базис подпространства заданного уравнением

Найти базис подпространства заданного уравнением

Так как Найти базис подпространства заданного уравнением, Найти базис подпространства заданного уравнениеми LM= 0, то Найти базис подпространства заданного уравнениеми Найти базис подпространства заданного уравнением. Следовательно Найти базис подпространства заданного уравнениеми Найти базис подпространства заданного уравнением. ■

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

23. Задание подпространств конечномерного линейного пространства с помощью систем линейных уравнений

Пусть дано N-Мерное линейное пространство L и пусть в нём зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть М – линейное подпространство в L .

Определение 30. Будем говорить, что Система линейных уравнений задаёт подпространство М, если этой системе удовлетворяют координаты всех векторов из М и не удовлетворяют координаты никаких других векторов.

Из свойств решений однородной системы линейных уравнений следует, что любая однородная линейная система уравнений ранга R с n Переменными задаёт в любом N-Мерном пространстве Ln (если в нём зафиксирован базис) (N–r )-мерное линейное подпространство.

Справедливо и обратное утверждение. А именно, имеет место следующая теорема.

Теорема 30. Если в линейном N-Мерном пространстве Ln Зафиксирован базис, то любое его К-мерное линейное подпространство можно задать системой линейных однородных уравнений с N Неизвестными ранга (N – к).

Доказательство. Пусть в Ln зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть – линейное К-мерное подпространство в Ln. Выберем в Любой базис А = (А1, а2,… , ак). Пусть Найти базис подпространства заданного уравнениемВ матричной форме А = Е × А, где А = Найти базис подпространства заданного уравнением.

Так как А – базис, то ранг матрицы А Равен К.

Найти базис подпространства заданного уравнением

Получили параметрические уравнения, определяющие .

После исключения параметров получится система (N – к) линейных однородных уравнений. Векторы А1, а2, … , ак являются её линейно независимыми решениями. Все остальные решения являются их линейными комбинациями.

Следовательно, система векторов (А1, а2, … , ак) будет фундаментальной системой решений полученной системы уравнений и поэтому ранг этой системы уравнений равен (N – к).

Пример. В пространстве L5 зафиксирован базис Е = (Е1, Е2, е3, е4 , Е5 ). Найти систему линейных однородных уравнений, задающих L3 = , если А1 = (1, –2, 2, 0, 1), А2 = (0, 4, 7, 0, 1), А3 = (–2, 3, –1, 0, 0).

Решение. Найдём ранг системы векторов (А1, а2, а3 ). Для этого достаточно найти ранг матрицы Найти базис подпространства заданного уравнением. Минор Найти базис подпространства заданного уравнением. Окаймляющий минор Найти базис подпространства заданного уравнением¹ 0, следовательно, ранг матрицы равен 3, т. е. векторы А1, а2, а3 линейно независимы и подпространство L3 – трёхмерное. Согласно доказанной теоремы, оно может быть задано системой линейных однородных уравнений ранга 2.

D Î L3 Û D = с1А1 + С2А2 + С3А3 . Отсюда D Î L3 Û Х1 = с1 – 2с3 , х2 = –2с1 + 4с2 + 3с3 , х3 = 2с1 + 7с2 – с3 , х4 = 0, х5 = с1 + с2. Если из первого, второго и пятого уравнений выразить С1, с2 и С3 И подставить их в третье и четвёртое уравнения, то получим следующую систему

Найти базис подпространства заданного уравнением

Замечание. Очевидно, система, задающая данное подпространство, определяется не единственным образом. К найденным уравнениям можно добавлять новые уравнения, являющиеся их линейными комбинациями.

🎦 Видео

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Базис линейного пространства (02)Скачать

Базис линейного пространства (02)

Базисы суммы и пересечения линейных подпространствСкачать

Базисы суммы и пересечения линейных подпространств

Базис суммы и пересечения линейных пространствСкачать

Базис суммы и пересечения линейных пространств

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Пересечение подпространств. ПримерСкачать

Пересечение подпространств. Пример

§48 Ортонормированный базис евклидова пространстваСкачать

§48 Ортонормированный базис евклидова пространства

Базисные решения систем линейных уравнений (03)Скачать

Базисные решения систем линейных уравнений (03)

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)
Поделиться или сохранить к себе: