Найдите все значения а при которых уравнение 5а а 3

Решение №2480 Найдите все положительные значения а, при каждом из которых корни уравнения 5а^2х – 2*4^х + 9*(2а)^x = 0

Найдите все положительные значения а, при каждом из которых корни уравнения 5а 2х – 2·4 х + 9·(2а) x = 0 принадлежат отрезку [–3; 1].

Источник: Ященко ЕГЭ 2022 (36 вар)

Найдите все значения а при которых уравнение 5а а 3

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4 / 5. Количество оценок: 10

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.

Видео:Найдите все значения а, при каждом из которых система уравнений имеет ровно четыре различных решенияСкачать

Найдите все значения а, при каждом из которых система уравнений имеет ровно четыре различных решения

задание 18

О категории

Уравнения и неравенства с параметрами.

Теория (1)

Разбор задания 18 профильного ЕГЭ по Математике «Задача с параметром»

Решение задач с параметром из профильного ЕГЭ по Математике. .

Практика (43)

При каких значениях параметра а уравнение

имеет два различных решения?

Найдите, при каких значениях параметра [b]a[/b] уравнение

имеет два различных корня. В ответе укажите сумму целых значений параметра [b]a[/b]‚ удовлетворяющих условию задачи.

При каких значениях параметра а уравнение

имеет единственное решение, большее или равное (-1)?

Найдите все [b]а[/b], при которых неравенство

2aх + 2sqrt(2x+3) — 2x + 3a — 5

Найти все a, при которых уравнение sqrt(1-4x)*ln(9x^2-a^2)=sqrt(1-4x)*ln(3x+a) имеет ровно одно решение.

При каких значениях параметра а уравнение имеет ровно 2 различных решения.

Найдите все значения параметра a, при каждом из которых система уравнений имеет ровно два решения

Найдите все значения [b]а[/b]. при каждом из которых данное уравнение на промежутке (0; +∞) имеет хотя бы три корня.

При каких [b]а[/b] сумма квадратов различных корней уравнения x^2-ax+a+1 = 0 больше 1?

При каких значениях p неравенство (p-x^2)(p+x-2)

Найдите все значение при каждом из которых система имеет ровно 3 различных решения
<(x-4)^2 + (y-4)^2=9
<y=|x-a|+1

Решить уравнение для всех a 25^x+a^2(a-1)5^x-a^5=0

Найти все значения параметра a, при которых функция f(x) = x^2 — |x-a^2| — 9x имеет хотя бы одну точку максимума.

Найдите все значения а, при каждом из которых решение неравенства |3x-a|+2

Найдите все значения a , при каждом из которых наименьшее значение функции f(x)=2ax+|x^2-8x+7| больше 1.

При каких а уравнение |x^2-4x-5|-3a=|x-a|-1 имеет ровно три корня.

Найдите все значения а, при каждом из которых система не имеет решений

Найти все значения параметра [b]а[/b], для каждого из которых корень уравнения [b]10x-15x = 13-5ax+2a[/b] больше 2

Найдите все значение [b]а[/b], при каждом из которых уравнение

имеет два корня, расстояние между которыми больше 3

Пусть х1 и х2 — нули функции y=2x^2-(3a-1)*x+a-4. Найти все значения a, если 1ϵ[x1; x2], где х1

при каких a уравнение (|4*x|-x-3-a)/(x2-x-a)=0 имеет два различных корня

Найдите все значения [b]а[/b] при которых уравнение

имеет два различных корня.

При каких значениях параметра а уравнение (x^(2)-6x-a)/(2x^(2)-ax-a^(2)) =0 имеет ровно два различных решения.

Найдите все параметры А при котором уравнение:

имеет два различных корня.

Найдите все значения параметра a, при которых наименьшее значение функции
f(x)=ax−2a−1+|x^2−x−2|
меньше -2

Найдите все значения параметра k при каждом из которых уравнение (2(k+1)cost-k)/(sint+cost) = 2 имеет хотя бы одно решение на отрезке [Pi/2; Pi]

[block](ax-x^2) + (1)/(ax-x^2) + 2 = 0[/block]

a? 2 различных корня на (-2; 2]

Найдите все значения a, при каждом из которых система

имеет два или три корня.

Найдите все значения а, при которых уравнение

имеет два различных корня

найдите все значения а , при которых уравнение (x^2-x-a)^2=2x^4+2(x+a)^2 имеет единственное решение на отрезке (-1;1)

найти все значения параметра а при каждом из которых уравнение 25^x — 5a(a+1)*5^(x-1) + a^3 = 0 имеет единственное решение

Найдите все положительные значения параметра, при каждом из которых система
(x-4)^2+(|y|-4)^2=9
x^2+(y-4)^2=a^2 имеет ровно два решения

Найти все значения параметра а, при которых x1 и x2 являются корнями квадратного уравнения х^2-(4а-3)х+3а^2-5а+2=0 и 4×1+5×2 = 29 .

Найдите все значения a, при каждом из которых система уравнений

имеет ровно восемь решений.

Найдите все значения a, при каждом из которых система уравнений имеет от одного до пяти решений

Найдите все значения a при которых существует хотя бы одно общее решение неравенств: [b]x^(2)+4ax+3a^(2) > 1+2a[/b] и [b]x^(2)+2ax ≤ 3a^(2)-8a+4 [/b]

Найдите все значения a, при каждом из которых система уравнение

имеет ровно три различных решения.

Найти все значения параметра а, при которых уравнение sqrt(2xy+a) = x+y+5 не имеет решений.

Найдите все значения а, при которых уравнение sin^(14)x+(a-3sinx)^7+sin^2x+a=3sinx имеет хотя бы одно решение.

Найдите все значения а, при каждом из которых система уравнений имеет более двух решений.

Найдите все значения а, при каждом из которых уравнение |x-a^2+4a-2|+|x-a^2+2a+3|=2a-5 имеет хотя бы один корень на отрезке [5; 23].

Найдите все значения параметра а, при каждом из которых система уравнений имеет более одного решения.

Найдите все значения а, при каждом из которых система

Видео:Найдите все значения а, при каждом из которых уравнение 64x^6+4x^2=(3x+a)^3+3x+a не имеет корней.Скачать

Найдите все значения а, при каждом из которых уравнение 64x^6+4x^2=(3x+a)^3+3x+a не имеет корней.

Уравнения с параметром

Разделы: Математика

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а Найдите все значения а при которых уравнение 5а а 30, т.е. а Найдите все значения а при которых уравнение 5а а 31, то х = Найдите все значения а при которых уравнение 5а а 3

Пример 4.

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а Найдите все значения а при которых уравнение 5а а 31, а Найдите все значения а при которых уравнение 5а а 3-1, то х = Найдите все значения а при которых уравнение 5а а 3(единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

если а = 5, то х = Найдите все значения а при которых уравнение 5а а 3= Найдите все значения а при которых уравнение 5а а 3;

Дидактический материал

3. а = Найдите все значения а при которых уравнение 5а а 3+ Найдите все значения а при которых уравнение 5а а 3

4. Найдите все значения а при которых уравнение 5а а 3+ 3(х+1)

5. Найдите все значения а при которых уравнение 5а а 3= Найдите все значения а при которых уравнение 5а а 3Найдите все значения а при которых уравнение 5а а 3

6. Найдите все значения а при которых уравнение 5а а 3= Найдите все значения а при которых уравнение 5а а 3

Ответы:

  1. При аНайдите все значения а при которых уравнение 5а а 31 х =Найдите все значения а при которых уравнение 5а а 3;
  1. При аНайдите все значения а при которых уравнение 5а а 33 х = Найдите все значения а при которых уравнение 5а а 3;
  1. При аНайдите все значения а при которых уравнение 5а а 31, аНайдите все значения а при которых уравнение 5а а 3-1, аНайдите все значения а при которых уравнение 5а а 30 х = Найдите все значения а при которых уравнение 5а а 3;

при а = 1 х – любое действительное число, кроме х = 1

  1. При аНайдите все значения а при которых уравнение 5а а 32, аНайдите все значения а при которых уравнение 5а а 30 х = Найдите все значения а при которых уравнение 5а а 3;
  1. При аНайдите все значения а при которых уравнение 5а а 3-3, аНайдите все значения а при которых уравнение 5а а 3-2, аНайдите все значения а при которых уравнение 5а а 30, 5 х = Найдите все значения а при которых уравнение 5а а 3
  1. При а + сНайдите все значения а при которых уравнение 5а а 30, сНайдите все значения а при которых уравнение 5а а 30 х = Найдите все значения а при которых уравнение 5а а 3;

Квадратные уравнения с параметром

Пример 1. Решить уравнение

х = – Найдите все значения а при которых уравнение 5а а 3

В случае а Найдите все значения а при которых уравнение 5а а 31 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

a = Найдите все значения а при которых уравнение 5а а 3

a = Найдите все значения а при которых уравнение 5а а 3

Если а -4/5 и а Найдите все значения а при которых уравнение 5а а 31, то Д > 0,

х = Найдите все значения а при которых уравнение 5а а 3

х = – Найдите все значения а при которых уравнение 5а а 3= – Найдите все значения а при которых уравнение 5а а 3

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

В итогеНайдите все значения а при которых уравнение 5а а 34(а – 1)(а – 6) > 0
— 2(а + 1) 0
Найдите все значения а при которых уравнение 5а а 3а 6
а > — 1
а > 5/9
Найдите все значения а при которых уравнение 5а а 3

Найдите все значения а при которых уравнение 5а а 36

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 Найдите все значения а при которых уравнение 5а а 30

4а(а – 4) Найдите все значения а при которых уравнение 5а а 30

а(а – 4)) Найдите все значения а при которых уравнение 5а а 30

Найдите все значения а при которых уравнение 5а а 3

Ответ: а Найдите все значения а при которых уравнение 5а а 30 и а Найдите все значения а при которых уравнение 5а а 34

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3аа 2 ) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9 х – (а + 2)*3 х-1/х +2а*3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х , получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log32 , или х 2 – хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 32 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а 9.

Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х — (5а-3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 25/2
  2. при а = 1, а = -2,2
  3. 0 0, хНайдите все значения а при которых уравнение 5а а 31/4 (3)

Найдите все значения а при которых уравнение 5а а 3х = у

Если а = 0, то –2у + 1 = 0
2у = 1
у = 1/2
Найдите все значения а при которых уравнение 5а а 3х = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а Найдите все значения а при которых уравнение 5а а 30, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а Найдите все значения а при которых уравнение 5а а 30, т.е. при а Найдите все значения а при которых уравнение 5а а 31.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х

Выражая х из (1) и подставляя в (2), получаем неравенство

Найдите все значения а при которых уравнение 5а а 32 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = Найдите все значения а при которых уравнение 5а а 32 – а и у = 1 – а.

Найдите все значения а при которых уравнение 5а а 3

Решения неравенства (3) образуют промежуток (а0; 2), где а0 2

а0 = Найдите все значения а при которых уравнение 5а а 3

Ответ: Найдите все значения а при которых уравнение 5а а 3x + 9a 3 ) = x имеет ровно два корня.

  • Найдите, при каких значениях а уравнение log 2 (4 x – a) = x имеет единственный корень.
  • При каких значениях а уравнение х – log 3 (2а – 9 х ) = 0 не имеет корней.
  • Ответы:

      при а 16.06.2009

    🎦 Видео

    Найдите все значения а, при каждом из которых уравнение имеет хотя бы один кореньСкачать

    Найдите все значения а, при каждом из которых уравнение имеет хотя бы один корень

    Найти все значения параметра а, при каждом из которых уравнение имеет не менее 3 корней.Скачать

    Найти все значения параметра а, при каждом из которых уравнение имеет не менее 3 корней.

    Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

    Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

    ЕГЭ профильная математика, задачи с параметрами, задание 5.1Скачать

    ЕГЭ профильная математика, задачи с параметрами, задание 5.1

    Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

    Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математике

    Найдите все значения параметра а, при которых система имеет единственное решениеСкачать

    Найдите все значения параметра а, при которых система имеет единственное решение

    Хороший ПАРАМЕТР ★ Задание 18 ЕГЭ профиль #56Скачать

    Хороший ПАРАМЕТР ★ Задание 18 ЕГЭ профиль #56

    РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать

    РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром Шарифовым

    Параметр 46 | mathus.ru | тригонометрическое уравнение с параметром, парабола, квадратное уравнениеСкачать

    Параметр 46 | mathus.ru | тригонометрическое уравнение с параметром, парабола, квадратное уравнение

    Найдите все значения параметра a, при каждом из которых уравнение имеет ровно два различных корняСкачать

    Найдите все значения параметра a, при каждом из которых уравнение имеет ровно два различных корня

    ✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

    ✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

    ЕГЭ по математике, c5, система уравнений с параметромСкачать

    ЕГЭ по математике, c5, система уравнений с параметром

    #118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

    #118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

    Математика ЕГЭ. Функции и уравения с параметром | ЕГЭ профиль | 23 день марафон | Подготовка к ЕГЭСкачать

    Математика ЕГЭ. Функции и уравения с параметром | ЕГЭ профиль | 23 день марафон | Подготовка к ЕГЭ

    Найдите все положительные значения параметра а, при каждом из которых система имеет единств решениеСкачать

    Найдите все положительные значения параметра а, при каждом из которых система имеет единств решение

    Найдите все значения а при каждом из которых уравнение имеет ровно один корень на отрезкеСкачать

    Найдите все значения а при каждом из которых уравнение имеет ровно один корень на отрезке

    САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВСкачать

    САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВ

    Параметр 42 | mathus.ru | показательное уравнение с параметром | квадратное уравнение | параболаСкачать

    Параметр 42 | mathus.ru | показательное уравнение с параметром | квадратное уравнение | парабола
    Поделиться или сохранить к себе: