Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Найдите все значения а, при которых уравнение : 10а + √( — 35 + 12x — x ^ 2) = ax + 1 имеет единственный корень?

Алгебра | 10 — 11 классы

Найдите все значения а, при которых уравнение : 10а + √( — 35 + 12x — x ^ 2) = ax + 1 имеет единственный корень.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

10a + sqrt( — 35 + 12x — x ^ 2) = ax + 1

Sqrt( — 35 + 12x — x ^ 2) = ax + 1 — 10a — 35 + 12x — x ^ 2 = a ^ 2 + 2(1 — 10a)x + (1 — 10a) ^ 2

X ^ 2 + (2 — 10a — 12)x + 35 + (1 — 10a) ^ 2 = 0

X ^ 2 — 10(a + 1)x + (36 — 20a + 100a ^ 2) = 0

100(a ^ 2 + 2a + 1) — 4(36 — 20a + 100a ^ 2) = 0 — 300a ^ 2 + 280a — 44 = 0 — 75a ^ 2 + 70a — 11 = 0

D = 4900 — 4 * 75 * 11 = 4900 — 3300 = 1600

A = ( — 70 — 40) / — 150 = 11 / 15

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Содержание
  1. Найдите все значения а при каждом из которых уравнение имеет единственный корень ax + корень их — 27 — 12x — x ^ 2 = 7a + 3?
  2. Найдите все значения параметра а при которых уравнение имеет единственный корень (5а — х)умножить на корень 2х — 2равно нулю?
  3. При каких значениях m уравнение имеет единственный корень?
  4. При каком значении параметра а уравнение а * х = 3а + х имеет единственный корень?
  5. При каком значении а уравнение ах = 2а — 3х имеет единственный корень?
  6. Найдите все значения параметра а, при каждом из которых уравнение имеет единственный корень?
  7. Найти сумму всех разных значений параметра p, при которых уравнение имеет единственный корень?
  8. Найдите все значения a, при каждом из которых уравнение имет единственный корень?
  9. Найдите при каком значении «а» уравнение имеет единственный корень?
  10. Найдите все значения k, при которых имеет единственный корень уравнений ?
  11. Решение задачи с параметрами.
  12. Задача Профильного Уровня на параметры
  13. Найдите все значения а, при каждом из которых уравнение имеет единственный корень
  14. 💡 Видео

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Найдите все значения а при каждом из которых уравнение имеет единственный корень ax + корень их — 27 — 12x — x ^ 2 = 7a + 3?

Найдите все значения а при каждом из которых уравнение имеет единственный корень ax + корень их — 27 — 12x — x ^ 2 = 7a + 3.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Найдите все значения параметра а при которых уравнение имеет единственный корень (5а — х)умножить на корень 2х — 2равно нулю?

Найдите все значения параметра а при которых уравнение имеет единственный корень (5а — х)умножить на корень 2х — 2равно нулю.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

При каких значениях m уравнение имеет единственный корень?

При каких значениях m уравнение имеет единственный корень?

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:Найдите все значения параметра а, при которых система имеет единственное решениеСкачать

Найдите все значения параметра а, при которых система имеет единственное решение

При каком значении параметра а уравнение а * х = 3а + х имеет единственный корень?

При каком значении параметра а уравнение а * х = 3а + х имеет единственный корень?

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:Найдите все значения а, при каждом из которых уравнение имеет хотя бы один кореньСкачать

Найдите все значения а, при каждом из которых уравнение имеет хотя бы один корень

При каком значении а уравнение ах = 2а — 3х имеет единственный корень?

При каком значении а уравнение ах = 2а — 3х имеет единственный корень?

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:При каких значениях параметра уравнение имеет единственный кореньСкачать

При каких значениях параметра уравнение имеет единственный корень

Найдите все значения параметра а, при каждом из которых уравнение имеет единственный корень?

Найдите все значения параметра а, при каждом из которых уравнение имеет единственный корень.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Найти сумму всех разных значений параметра p, при которых уравнение имеет единственный корень?

Найти сумму всех разных значений параметра p, при которых уравнение имеет единственный корень.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математике

Найдите все значения a, при каждом из которых уравнение имет единственный корень?

Найдите все значения a, при каждом из которых уравнение имет единственный корень.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать

РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром Шарифовым

Найдите при каком значении «а» уравнение имеет единственный корень?

Найдите при каком значении «а» уравнение имеет единственный корень.

Найдите этот корень.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Найдите все значения k, при которых имеет единственный корень уравнений ?

Найдите все значения k, при которых имеет единственный корень уравнений :

Вы открыли страницу вопроса Найдите все значения а, при которых уравнение : 10а + √( — 35 + 12x — x ^ 2) = ax + 1 имеет единственный корень?. Он относится к категории Алгебра. Уровень сложности вопроса – для учащихся 10 — 11 классов. Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие ответы по интересующей теме. Чтобы получить наиболее развернутый ответ, можно просмотреть другие, похожие вопросы в категории Алгебра, воспользовавшись поисковой системой, или ознакомиться с ответами других пользователей. Для расширения границ поиска создайте новый вопрос, используя ключевые слова. Введите его в строку, нажав кнопку вверху.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

2) 9y — y ^ 2 + 45 — 5y = — y ^ 2 + 4y + 45 4) 2b — b ^ 2 + 6 — 3b = — b ^ 2 — b + 6 6) d ^ 2 + 3d + 11d + 33 = d ^ 2 + 14d + 33.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Ответ 4 — ый задачи «сравнить числа».

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

X + 3 / 3 + х + 4 / 4 — 3, 5 = x — 3 / 6 x + x — x = — 3 / 6 — 3 / 3 — 4 / 4 — 3, 5 1х = — 1 х = — 1 : 1 х = — 1 Ответ : — 1.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

1. 10а руб. — стоят 10 мячей 5b руб. — стоят 5 ракеток 10а + 5b — стоимость всей покупки. 2. 2n руб. — стояли 2 тетради 100% — 3% = 97% ; 2n * 97% = 2n * 0, 97 = 1, 94n руб. — стали стоить 2 тетради 3m руб. — стояли 3 ручки 100% — 2% = 98% ; 3m..

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

3у = 24 — 2х у = (24 — 2х) : 3 2х = 24 — 3у х = (24 — 3у) : 2.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Пусть скорость катера в стоячей воде равна х, тогда по течению х + 1, против течения х — 1. Катер проплыл по течению (х + 1) * 3, а против течения(х — 1) * 5 (х + 1) * 3 = (х — 1) * 5 3х + 3 = 5х — 5 2х = 8 х = 4 скорость катера в стоячей воде 4 км ..

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

1) x17 × x23 = x40 2) (x8)3 = x24 3) (x2)5 = x10 4) x24 × x5 × x10 = x39 5) x = x40 / x39 = 104.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Действия в скобке 1 выполняется в скобках справа — 0, 04 дробь в неправильную — 11 / 6 = 0, 11 Ответ — 2, 75.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

А 4 49 121 0, 25 3600 2 0, 4 5 99 √а 2 7 11 0, 5 60 √2 √0, 4 √5 √99 = √9 * 11 = 3√11.

Видео:Как решать уравнение с параметром и модулем ★ Решите уравнение: x-|x|=aСкачать

Как решать уравнение с параметром и модулем ★ Решите уравнение: x-|x|=a

Решение задачи с параметрами.

Видео:Параметр 47 | mathus.ru | уравнение полуокружности, корень, пучок прямых, графический методСкачать

Параметр 47 | mathus.ru | уравнение полуокружности, корень, пучок прямых, графический метод

Задача Профильного Уровня на параметры

Эта задача была на экзамене 2016 года в основной период ЕГЭ по математике. Многие ребята тогда писали, что задания по математике профильного уровня были чрезмерно сложными, и даже создали петицию на сайте OnlinePetition.ru

Ребята, прикол в том, что они были проще многих из тех образцов, по которым вы готовились. Просто непривычнее. Дело в том, что в последнее время на ЕГЭ давались задачи на параметры, которые лучше было решать графическим методом. А 6 июня 2016 года были задачи, в которых достаточно было проанализировать ОДЗ (Область Допустимых Значений) уравнения и его Дискриминант, так как после преобразований уравнение оказывалось квадратным (!).

Давайте рассмотрим решения двух примеров.

Найдите все значения параметра a, при каждом из которых уравнение

√15x 2 + 6ax + 9 ____________ = x 2 + ax + 3

имеет ровно три различных решения.

Решение.

Не забываем начать решение уравнения с анализа его области определения.
Область определения уравнения (системы уравнений, неравенства, функции) совпадает с Областью Допустимых Значений выражения, если условием задачи никаких специальных ограничений не накладывается. Здесь просто ОДЗ:
1) 15x 2 + 6ax + 9 ≥ 0 ;
2) x 2 + ax + 3 ≥ 0 .
Оба неравенства должны выполняться одновременно, т.е. фактически это система неравенств.
Первое условие означает, что подкоренное выражение для корней чётной степени обязано быть неотрицательным.
Второе условие связано с определением арифметического корня. Согласно этому определению результат вычисления квадратного корня есть неотрицательное число, поэтому правая часть равенства также должна быть неотрицательной.
Оба неравенства являются квадратными, но решать мы их будем позже. А пока, заручившись неотрицательностью обеих частей равенства, смело возводим обе части уравнения в квадрат, чтобы избавиться от знака радикала.

Сумма трёх членов возводится в квадрат по правилу — все три квадрата и все три удвоенных произведения, т.е.
(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ac.
Но если вы этого не знаете, не страшно. Скобки-то умеете и ставить, и раскрывать.
(a + (b + c)) 2 = a 2 + 2a(b + c) + (b + c) 2 и далее.

Любым способом после возведения в квадрат получим

Преобразуем: переносим все слагаемые в правую часть, приводим подобные члены, общий множитель выносим за скобки. Имеем:

Очевидно, что x = 0 будет корнем этого уравнения при любом значении параметра a. Проверим ОДЗ при x = 0.

1) 15·0 2 + 6a·0 + 9 ≥ 0; 9 ≥ 0 ;
2) 0 2 + a·0 + 3 ≥ 0; 3 ≥ 0.

Оба неравенства выполняются также при любом значении параметра a. Значит один корень уже есть и теперь нам осталось найти все значения параметра a, при каждом из которых квадратное уравнение

имеет ровно два различных решения, не совпадающих с x = 0 и удовлетворяющих неравенствам 1) и 2), т.е. первоначальному ОДЗ.
Исследуем дискриминант:

Таким образом, последнее уравнение при любом a имеет два разных корня, которые мы можем найти

Совпадение с первым (нулевым корнем) может быть при −a + 3 = 0; a = 3 и при −a − 3 = 0; a = −3 .

Замечание. Это уравнение проще и быстрее решать не через дискриминант, а выделением полного квадрата.
x 2 + 2ax + a 2 − 9 = 0; (x + a) 2 = 9; x + a = ±3.
Но на таком ответственном мероприятии, как выпускной экзамен, я советую решать двумя способами сразу — для взаимной проверки ответов.

Осталось сверить эти корни с Областью Допустимых Значений исходного уравнения.
Проверяем, подставляя поочередно оба корня в оба неравенства.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный кореньНайдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Найдите все значения а при каждом из которых уравнение 10а имеет единственный кореньНайдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Итак, первому неравенству всегда удовлетворяют оба корня. Чтобы оба корня удовлетворяли второму неравенству, нужно чтобы параметр a удовлетворял системе условий Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень, т.е. принадлежал промежутку [−4; 4].

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Найдите все значения а, при каждом из которых уравнение

имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и xa .
Преобразуем:

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
— Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
— Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
— Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: «дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю».

После раскрытия скобок и приведения подобных членов получим

окончательно приведём к виду, характерному для квадратного уравнения:

Дискриминант этого уравнения

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10 __ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a, ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a, при которых корнем квадратного уравнения является x = а.

Определим те значения a, при которых корнем квадратного уравнения является x = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

Видео:Параметр 48 | mathus.ru | симметрия, единственность корняСкачать

Параметр 48 | mathus.ru | симметрия, единственность корня

Найдите все значения а, при каждом из которых уравнение имеет единственный корень

Найдите все значения а, при каждом из которых уравнение

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

имеет единственный корень.

В левой части уравнения выделим целую часть

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Тогда уравнение примет вид

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Оно равносильно системе

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Решим систему графически в системе координат xOa. Для этого строим графики функций a = x 2 − 3x и a = ± x/2 . Графиком функции a = x 2 − 3x является парабола, ветви которой направлены вверх. Вершина параболы — точка (3/2; — 9/4), точки (0; 0) и (3; 0) принадлежат параболе. Графиками функций a = ± x/2 являются прямые.

Найдите все значения а при каждом из которых уравнение 10а имеет единственный корень

Решая уравнение x 2 − 3x = x/2 , находим точки пересечения прямой a = x/2 и параболы a = x 2 − 3x: x = 0, x = 7/2 , откуда a = 0, a = 7/4 . Аналогично, решая уравнение x 2 − 3x = − x/2 , находим x = 0, x = 5/2 . Тогда a = 0, a = − 5/4 . Выкалываем эти точки.

По рисунку видим, что ровно одна точка пересечения параболы с каждой из прямых при a = − 9/4 , a = − 5/4 , a = 0, a = 7/4.

Ответ: − 9/4 ; − 5/4 ; 0; 7/4.

💡 Видео

Решу ЕГЭ. Параметры. Тема 5 Симметрия. Задача 10.Скачать

Решу ЕГЭ. Параметры. Тема 5 Симметрия. Задача 10.

Найдите все значения параметра m≦100 , при которых уравнение σ(x)=m имеет решениеСкачать

Найдите все значения параметра m≦100 , при которых уравнение σ(x)=m имеет решение

Параметр | При каких значениях параметра решение неравенства принадлежит отрезку| Задача 17 ЕГЭ 2022Скачать

Параметр | При каких значениях параметра решение неравенства принадлежит отрезку| Задача 17 ЕГЭ 2022

Задание 18. ЕГЭ математика 2024. Разбор за 2 часа всех типов. Параметры ЕГЭ. Решение параметров.Скачать

Задание 18. ЕГЭ математика 2024. Разбор за 2 часа всех типов. Параметры ЕГЭ. Решение параметров.

5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать

5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023

Реально ЧЕТКИЙ ПАРАМЕТР || Задание из РЕАЛЬНОГО ЕГЭСкачать

Реально ЧЕТКИЙ ПАРАМЕТР || Задание из РЕАЛЬНОГО ЕГЭ

ЕГЭ по математике, c5. Уравнение с параметромСкачать

ЕГЭ по математике, c5. Уравнение с параметром
Поделиться или сохранить к себе: