Условие
Найти все значения параметра a, при каждом из которых система уравнений имеет ровно два различных решения
Решение
Первое уравнение определено, если
16-y^2 ≥ 0 ⇒ y^2 ≤ 16 ⇒|y| ≤4 ⇒ [blue][b] -4 ≤ y ≤ 4[/b][/blue]
При [blue][b] -4 ≤ y ≤ 4[/b][/blue] первое уравнение принимает вид:
16-y^2=16-a^2x^2 ⇒ y^2=a^2x^2 ⇒[blue] |y|=|[b]ax[/b]|[/blue] ⇒
Подставляем во второе уравнение:
Совокупность двух систем имеет два решения, если первая система имеет два решения, а вторая не имеет решений или наоборот или
каждая система имеет по одному решению ( отличных одно от другого)
Видео:№16 Задачи с параметром. ЕГЭ. Задание 18. При каких значениях параметра А система уравнений...Скачать
Решение №722 Найдите все значения a, при каждом из которых система уравнений <︃ log3(a − x^2) = log3(a − y^2), x^2 + y^2 = 4x + 6y
Найдите все значения a, при каждом из которых система уравнений имеет ровно два различных решения.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 3.4 / 5. Количество оценок: 17
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время
В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.
Видео:Математика Найдите все значения a, при каждом из которых система уравнений (x-3)(3x-9-y)=|x-3|^3Скачать
Найдите все значения a при каждом из которых система уравнений 16 y2 16 a2x2
Найдите все значения параметра a, при каждом из которых система
имеет единственное решение.
Тогда исходная система равносильна следующей смешанной системе:
Построим её график и определим, при каких значения параметра пучок прямых имеет единственную общую точку с объединением двух лучей
и
при условиях
(см. рис.)
Ответ:
прямая у=5 определена лишь до х=6, значит при больших положительных а будет пересечение лишь с прямой у=х+2, то есть будет одно решение, как нам и нужно. значит в ответе должен быть промежуток от 0 до +беск.
То есть по Вашему после х=6 прямой y=5 нет, а прямая y=x+2 есть?
она есть до х=6 и пересекается с нашей прямой при больших а.
При а>1 пересечений нет
Найдите все значения a, при каждом из которых система
имеет ровно два различных решения.
Решим первое уравнение:
Рассмотрим случай (1): y = −7. При любом a получаем одно решение x = a + 7, для которого неравенство x ≥ −3 верно только при a ≥ −10.
Рассмотрим случай (2):
Так как то при
корней нет, при
получаем один корень
при
получаем два различных корня. У параболы
— ветви вверх, абсцисса вершины равна
Значит, оба корня не меньше -3 при то есть при
а при
один корень меньше −3, а другой — больше −3.
Соберем сведения о числе решений в случаях (1) и (2) в таблице
Остаётся учесть те значения a, при которых решение из случая (1) совпадает с одним из решений случая (2). Тогда с учётом
из
получаем, что x = 4, a = −3.
Ответ:
Примечание: для решения задачи можно использовать графо-аналитический метод.
Можете объяснить, как мы из yx^2+y^2-2y-63+7x^2=0 получили (y+7)(y+x^2-9)=0 Всё никак не удаётся преобразовать к такому виду.
Значит, оба корня не меньше -3 при то есть при а при один корень меньше −3, а другой — больше −3.не могу додуматься откуда это -3
Найдите все значения параметра a, при каждом из которых система
имеет ровно решений.
Преобразуем систему, получим:
Первое уравнение задает части двух парабол (см. рис.):
Второе уравнение задает окружность радиусом с центром
На рисунке видно, что шесть решений системы получаются, только если окружность проходит через точки
и
пересекая параболу еще в четырех точках.
При этом радиус окружности равен откуда
или
Ответ:
Найдите все значения параметра a, при каждом из которых система
имеет единственное решение.
Преобразуем исходную систему:
Уравнение задает пару пересекающихся прямых
и
Система
задает части этих прямых, расположенные правее прямой то есть лучи BD и CE (без точек B и C), см. рис.
Уравнение задает прямую m с угловым коэффициентом a, проходящую через точку
Следует найти все значения a, при каждом из которых прямая m имеет единственную общую точку с объединением лучей BD и
а) Прямая AB задается уравнением Поэтому при
прямая m не пересечет ни луч BD, ни луч
б) Прямая AC задается уравнением Поэтому при
прямая m пересечет луч BD, но не пересечет луч
в) При прямая m пресечет и луч BD, и луч
г) Наконец, при прямая m пересечет только луч CE, а при
она не пересечет ни луч BD, ни луч
Ответ:
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Задание №195
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Условие
Найдите все значения параметра a, при каждом из которых система уравнений имеет более одного решения.
beginx^2+16x+y^2+16y+48=left | x^+y^-16 right |, \ x+y=a end
Видео:Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать
Решение
Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют первому уравнению системы.
Рассмотрим два случая:
1) Если x^2+y^2 geqslant 16, получаем уравнение
Это уравнение при соответствующих значениях x и y , удовлетворяющих неравенству x^2+y^2 geqslant 16, задает два луча, выходящих из точек A(-4; 0) и B(0; -4) и расположенных на прямой y=-x-4 .
2) Если x^2+y^2 , то получаем уравнение
Это уравнение при соответствующих значениях x и y , удовлетворяющих неравенству x^2+y^2 задает дугу omega окружности с центром в точке O(-4;-4) и радиусом 4 с концами в точках A и B .
Рассмотрим второе уравнение системы. Оно задает прямую y=-x+a , параллельную прямой АВ или совпадающую с ней при a= -4 (в этом случае система имеет бесконечное множество решений).
Очевидно, что при a система решений иметь не будет.
При a> -4 система уравнений будет иметь более одного решения тогда и только тогда, когда прямая y=-x+a будет пересекать дугу omega в двух различных точках.
Найдем, при каком значении a прямая y=-x+a касается дуги omega . Из соображений симметрии заметим, что касание происходит в точке С с координатами (x_0; y_0) , которая находится на прямой y=x , откуда x_0 = y_0 . Подставляя координаты точки C(x_0; x_0) в уравнение, которое задает дугу omega , имеем:
x_0=2sqrt-4; x_0=-2sqrt -4 не принадлежит дуге omega .
Значит, при -4 система имеет два решения, при a = 4sqrt-8 система имеет одно решение, при a >4sqrt-8 система решений не имеет.
📸 Видео
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
ЕГЭ 2018. Задача на параметры. Найдите все значения "a"...Скачать
Математика | Параметр. Система уравнений с параметромСкачать
Найдите все положительные значения параметра а, при каждом из которых система имеет единств решениеСкачать
САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВСкачать
Найдите все значения параметра m≦100 , при которых уравнение σ(x)=m имеет решениеСкачать
Найдите все значения параметра a, при каждом из которых система уравнений имеет ровно два решенияСкачать
ЕГЭ 2018 Найдите все значения параметра, при каждом из которых система неравенств имеетСкачать
#11. Как решать системы уравнений с параметром графически?Скачать
Найдите все значения параметра а, при которых система имеет единственное решениеСкачать
✓ Система уравнений с параметром | ЕГЭ-2018. Задание 17. Математика. Профиль | Борис ТрушинСкачать
Задача 17 ЕГЭ профильный. Параметры с нуляСкачать
Решение систем уравнений второго порядка. 8 класс.Скачать
РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать
Решение систем уравнений методом подстановкиСкачать