Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

Видео:Решите систему уравнений в целых числахСкачать

Решите систему уравнений в целых числах

Задача 3546 Найдите все пары целых чисел (х;у).

Условие

Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

Найдите все пары целых чисел (х;у), удовлетворяющих уравнению 3х-у=19

Решение

Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

(7;2), (8;5), (9;8), (10, 11) тут надо зависимость понять.
(-1; -22), (0;-19), (1;-16) так и так получается одна и таже зависимость, когда первое число возрастает на 1, второе увеличивается на 3

вообщем можно рассмотреть как 2 арифметические прогрессии
a1=0
a2=1
d=a2-a1=1-0=1
an=a1+(n-1)d=0 + (n-1)1 = n-1

b1=-19
b2=-16
d=b2-b1 = 3
bn=b1+(n-1)d = -19 + 3(n-1)

я бы записал ответ так (n-1; -19 + 3(n-1)) где n любое целое число

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Школе NET

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 16445113

Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

Таня Масян

Видео:Пусть q – НОК, а d – НОД натуральных чисел x и y, удовлетворяющих равенству 3x = 8y − 29Скачать

Пусть q – НОК, а d – НОД натуральных чисел x и y, удовлетворяющих равенству 3x = 8y − 29

Найдите все пары целых чисел удовлетворяющих уравнению: 3x-y=19

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Лучший ответ:

Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

Васян Коваль

y=3x-19 , если х принимает целые значения , то y также целое , значит каждому целому х будет соответствовать целый у , вычисленный по этой формуле , уравнение имеет бесконечно много целых решений и все они имеют вид:

( n ; 3n-19) , n∈Z , вместо n можно подставить любое целое число

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Олимпиадные задания. Решение уравнений в целых числах
методическая разработка по алгебре (9, 10, 11 класс) на тему

Найдите все пары чисел x y удовлетворяющих уравнению 3x y 19

В данной работе представлены различные способы решения уравнений в целых числах. Работа может быть использована при подготовке к олимпиадам, на кружковых и факультативных занятиях.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Скачать:

ВложениеРазмер
aksanova_ii._olimpiadnye_zadaniya.reshenie_uravneniy_v_tselyh_chislah.docx100.62 КБ

Видео:Найдите наименьшее значение x, удовлетворяющее системе ... | ОГЭ 2017 | ЗАДАНИЕ 8 | ШКОЛА ПИФАГОРАСкачать

Найдите наименьшее значение x, удовлетворяющее системе ... | ОГЭ 2017 | ЗАДАНИЕ 8 | ШКОЛА ПИФАГОРА

Предварительный просмотр:

МБОУ «Высокогорская средняя общеобразовательная школа №2

Высокогорского муниципального района Республики Татарстан»

Решение уравнений в целых числах

Аксанова Ильсияр Исмагиловна

Учитель математики высшей категории

С. Высокая Гора – 2015 г.

Работа посвящена решению уравнений в целых числах. Актуальность этой темы обусловлена тем, что задачи, основанные на решении уравнений в целых числах, часто встречаются на вступительных экзаменах в высшие учебные заведения и на олимпиадах по математике и на ЕГЭ в старших классах. В школьной программе эта тема рассматривается в ознакомительном порядке. В работе представлены различные способы решения уравнений в целых числах, разобраны конкретные примеры. Данная работа будет полезна учителям старших классов для подготовки к ЕГЭ и олимпиадам.

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика Диофанта Аксандрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

При решении уравнений в целых и натуральных числах можно условно выделить следующие способы решения:

  • способ перебора вариантов;
  • применение алгоритма Евклида;
  • применение цепных дробей;
  • разложения на множители;
  • решение уравнений в целых числах как квадратных относительно какой-либо переменной;
  • метод остатков;
  • метод бесконечного спуска;
  • оценка выражений, входящих в уравнение.

В работе представлены два приложения: п риложение 1. Таблица остатков при делении степеней ( a n : m ); приложение 2. Задачи для самостоятельного решения

1. Способ перебора вариантов.

Пример 1.1. Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49 х + 51 у = 602.

Решение. Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то

х = 602 — 51 у ≥ 49, 51 у ≤553, 1≤ у ≤10 .

Полный перебор вариантов показывает, что натуральными решениями уравнения являются х =5, у =7.

2. Применение алгоритма Евклида. Теорема.

Дано уравнение ax+by=c , где a, b, c -целые числа, a и b не равны 0.

Теорема: Если c не делится нацело на НОД( a,b ), то уравнение не разрешимо в целых числах. Если НОД( a,b )=1или c делится на НОД( a,b ), то уравнение разрешимо в целых числах. Если (x 0 , y 0 )- какое-нибудь решение уравнения, то все решения уравнения задаются формулами:

y=y 0 +at , где t — принадлежит множеству целых чисел.

Пример 2.1. Решить уравнение в целых числах 5 х + 7 у = 19

Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Тогда 5 x 0 + 7 y 0 = 19, откуда

5( х – x 0 ) + 7( у – y 0 ) = 0,

5( х – x 0 ) = –7( у – y 0 ).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7 k , у – y 0 = –5 k.

Значит, общее решение:

х = 1 + 7 k , у = 2 – 5 k ,

где k – произвольное целое число.

Ответ: (1+7 k ; 2–5 k ), где k – целое число.

Пример 2.2. Решить уравнение 201 х – 1999 у = 12.

Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201 х – 1999 у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201 х – 1999 у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999 k , у = 1536 + 201 k , где k – целое число,

или, используя, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201, имеем

х = 1283 + 1999 n , у = 129 + 201 n , где n – целое число.

Ответ: (1283+1999 n , 129+201 n ), где n – целое число.

3. Метод остатков.

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Замечание . Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 3.1. Решить уравнение в целых числах x 3 + y 3 = 3333333;

Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.2. Решить уравнение в целых числах x 3 + y 3 = 4( x 2 y + xy 2 + 1).

Перепишем исходное уравнение в виде ( x + y ) 3 = 7( x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.3. Решить в целых числах уравнение x 2 + 1 = 3 y .

Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y .

Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3 k , то правая часть уравнения на 3 не делится.

Если х = 3 k+ 1, то x 2 + 1= (3 k+ 1) 2 +1=3 m +2, следовательно, опять левая часть на 3 не делится.

Если х = 3 k+ 2, то x 2 + 1= (3 k+ 2) 2 +1=3 m +2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y . Следовательно, уравнение в целых числах решений не имеет.

Ответ: целочисленных решений нет.

Пример 3.4. Решить в целых числах x³ — 3y³ — 9z³ = 0 (1)

Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду

x ³ = 3 y ³ + 9 z ³ (2)

Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 — число простое, х делится на 3, т.е. х = 3 k , подставим это выражение в уравнение (2), получим:

27 k 3 = 3 y ³ + 9 z ³, откуда

9 k 3 = y ³ + 3 z ³ (3)

следовательно, y ³ делится на 3 и y = 3 m . Подставим полученное выражение в уравнение (3): 9 k 3 = 27 m ³ + 3 z ³, откуда

3 k 3 = 9 m ³ + z ³ (4)

В свою очередь, из этого уравнения следует, что z 3 делится на 3, и z = 3 n . Подставив это выражение в (4), получим, что k 3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

4. Решение уравнений в целых числах сведением их к квадратным.

Пример 4.1. Решить в простых числах уравнение

х 2 – 7 х – 144 = у 2 – 25 у .

Решим данное уравнение как квадратное относительно переменной у . Получим: у = х + 9 или у = 16 – х .

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х , имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

Пример 4.2 . Решить в целых числах уравнение x + y = x 2 – xy + y 2 .

Рассмотрим данное уравнение как квадратное уравнение относительно x :

x 2 – ( y + 1) x + y 2 – y = 0.

Дискриминант этого уравнения равен –3 y 2 + 6 y + 1. Он положителен лишь для следующих значений у : 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х , которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

Пример 4.3 . Решить уравнение в целых числах: 5 х 2 +5 у 2 +8 ху +2 у -2 х +2=0.

Рассмотрим уравнение как квадратное относительно х:

5 х 2 + (8 у — 2) х + 5 у 2 + 2 у + 2 = 0

D = (8 у — 2) 2 — 4·5(5 у 2 + 2 у + 2) = 64 у 2 — 32 у + 4 = -100 у 2 — 40 у – 40 = = -36( у 2 + 2 у + 1) = -36( у + 1) 2

Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

-36( у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

5. Разложение на множители .

Пример 5.1. Решить в целых числах уравнение x 2 – xy – 2 y 2 = 7.

Разложим левую часть на множители ( x – 2 y )( x + y ) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2 y = 7, x + y = 1;

2) x – 2 y = 1, x + y = 7;

3) x – 2 y = –7, x + y = –1;

4) x – 2 y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

Пример 5.2 . Решить уравнение в целых числах: х 2 + 23 = у 2

Решение. Перепишем уравнение в виде:

у 2 — х 2 = 23, ( у — х )( у + х ) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

Решая полученные системы, находим:

Пример 5.3 . Решить уравнение в целых числах y 3 — x 3 = 91.

Решение. Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

( y — x )( y 2 + xy + x 2 ) = 91

Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 — 2| y || x | + x 2 = (| y | — | x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение равносильно совокупности систем уравнений:

Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Пример 5.4 . Решить в целых числах уравнение x + y = xy .

Решение. Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1)

x + y – xy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: ( x — 1)( y — 1) = 1

Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1). Записав соответствующие системы уравнений и, решив их, получим решение исходного уравнения.

Пример 5.5 . Доказать, что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах.

Решение. Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x — y )( y — z )( z — x ) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

6. Метод бесконечного спуска.

Метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Пример 6.1 . Решить уравнение в целых числах 5 x + 8 y = 39.

Выберем неизвестное, имеющее наименьший коэффициент , и выразим его через другое неизвестное: . Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3 y без остатка делится на 5.

Введем дополнительную целочисленную переменную z следующим образом: 4 –3 y = 5 z . В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его будем уже относительно переменной y , рассуждая аналогично: . Выделяя целую часть, получим:

Рассуждая аналогично предыдущему, вводим новую переменную

Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z : = . Требуя, чтобы было целым, получим: 1 – u = 2 v , откуда u = 1 – 2 v . Дробей больше нет, спуск закончен.

Теперь необходимо «подняться вверх». Выразим через переменную v сначала z , потом y и затем x :

z = = = 3 v – 1; = 3 – 5 v .

Формулы x = 3+8 v и y = 3 – 5 v , где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Ответ: x = 3+8 v и y = 3 – 5 v.

7. Оценка выражений, входящих в уравнение.

Пример 7.1. Решить в целых числах уравнение ( х 2 + 4)( у 2 + 1) = 8ху

Решение. Заметим, что если ( х ;у ) – решение уравнения, то (- х ;- у ) – тоже решение.

И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

тогда их произведение ( х + )( у + ) = 4·2 = 8, значит, х + = 4 и у + = 2.

Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

Пример 7.2 . Решить уравнение в целых числах

x 2 + 13 y 2 – 6 xy = 100

Решение . x 2 + 13 y 2 –6 xy= 100 ↔ ( x- 3 y ) 2 + 4 y 2 = 100 . Так как ( x- 3 y ) 2 ≥ 0 , то 4 y 2 ≤ 100 , или │ 2 y│≤ 10 . Аналогично, в силу 4 y 2 ≥ 0 должно выполняться │x- 3 y│≤ 10 .

🔥 Видео

Задание 18 ЕГЭ по математике #7Скачать

Задание 18 ЕГЭ по математике #7

✓ Учимся не бояться задания 18 | ЕГЭ. Математика. Профиль | #ТрушинLive #019 | Борис Трушин |Скачать

✓ Учимся не бояться задания 18 | ЕГЭ. Математика. Профиль | #ТрушинLive #019 | Борис Трушин |

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?Скачать

Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Решите уравнение в целых числах: y²+1=2^x ➜ Как решать диофантовы уравненияСкачать

Решите уравнение в целых числах: y²+1=2^x ➜ Как решать диофантовы уравнения

Диофантовы уравнения x²+xy-y=2Скачать

Диофантовы уравнения x²+xy-y=2

Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика

11 класс, 32 урок, Уравнения и неравенства с двумя переменнымиСкачать

11 класс, 32 урок, Уравнения и неравенства с двумя переменными

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Решение системы уравнений и неравенств | Математика, алгебра, подготовка к ОГЭ и ЕГЭ | Михаил ПенкинСкачать

Решение системы уравнений и неравенств | Математика, алгебра, подготовка к ОГЭ и ЕГЭ | Михаил Пенкин
Поделиться или сохранить к себе: