Найдите утроенное произведение корней уравнения

Теорема Виета

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь Найдите утроенное произведение корней уравнения. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Найдите утроенное произведение корней уравнения. Докáжем, что дроби Найдите утроенное произведение корней уравненияи Найдите утроенное произведение корней уравненияравны. То есть докажем, что равенство Найдите утроенное произведение корней уравненияявляется верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

Найдите утроенное произведение корней уравнения

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Найдите утроенное произведение корней уравнения

Поскольку равенство Найдите утроенное произведение корней уравненияявляется пропорцией, а пропорция это равенство двух отношений, то дроби Найдите утроенное произведение корней уравненияи Найдите утроенное произведение корней уравненияравны. Теорема доказана.

Видео:Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравненияСкачать

Вариант 17, № 2. Теорема Виета. Сумма корней квадратного уравнения

Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

Найдите утроенное произведение корней уравнения

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

Найдите утроенное произведение корней уравнения

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

Найдите утроенное произведение корней уравнения

Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

Найдите утроенное произведение корней уравнения

Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

Найдите утроенное произведение корней уравнения

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

Найдите утроенное произведение корней уравнения

Значит выражение Найдите утроенное произведение корней уравненияявляется справедливым.

Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

Найдите утроенное произведение корней уравнения

А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

Найдите утроенное произведение корней уравнения

Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Найдите утроенное произведение корней уравнения

Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

Значит выражение Найдите утроенное произведение корней уравненияявляется справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

Найдите утроенное произведение корней уравнения

Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

А значит записывать выражение Найдите утроенное произведение корней уравненияне имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Найдите утроенное произведение корней уравнения

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Найдите утроенное произведение корней уравнения

Вспомним формулы корней квадратного уравнения:

Найдите утроенное произведение корней уравнения

Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Найдите утроенное произведение корней уравнения

Запишем правую часть в виде дроби с одним знаменателем:

Найдите утроенное произведение корней уравнения

Раскроем скобки в числителе и приведём подобные члены:

Найдите утроенное произведение корней уравнения

Сократим дробь Найдите утроенное произведение корней уравненияна 2 , тогда получим −b

Найдите утроенное произведение корней уравнения

Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Найдите утроенное произведение корней уравнения

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

Найдите утроенное произведение корней уравнения

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Найдите утроенное произведение корней уравненияА знаменатель будет равен 4

Найдите утроенное произведение корней уравнения

Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Найдите утроенное произведение корней уравнениястанет равно просто D

Найдите утроенное произведение корней уравнения

Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

Найдите утроенное произведение корней уравнения

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Найдите утроенное произведение корней уравнения

Сократим получившуюся дробь на 4

Найдите утроенное произведение корней уравнения

Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

Видео:Найти значение суммы и произведения корней квадратного уравненияСкачать

Найти значение суммы и произведения корней квадратного уравнения

Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

Найдите утроенное произведение корней уравнения

А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

Найдите утроенное произведение корней уравнения

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

Найдите утроенное произведение корней уравнения

Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

Найдите утроенное произведение корней уравнения

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

Найдите утроенное произведение корней уравнения

Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

Найдите утроенное произведение корней уравнения

Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

Найдите утроенное произведение корней уравнения

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

Найдите утроенное произведение корней уравнения

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

Найдите утроенное произведение корней уравнения

В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

Найдите утроенное произведение корней уравнения

Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Найдите утроенное произведение корней уравнения

Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2 .

Найдите утроенное произведение корней уравнения

Итак, корнями являются числа −1 и −2

Найдите утроенное произведение корней уравнения

Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Найдите утроенное произведение корней уравнения

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

Найдите утроенное произведение корней уравнения

Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Найдите утроенное произведение корней уравнения

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

Найдите утроенное произведение корней уравнения

Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

Найдите утроенное произведение корней уравнения

Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

При этом один из корней уже известен — это корень 15 .

Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Найдите утроенное произведение корней уравнения

Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Найдите утроенное произведение корней уравнения

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

Найдите утроенное произведение корней уравнения

Из этой системы следует найти x2 и b . Выразим эти параметры:

Найдите утроенное произведение корней уравнения

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Найдите утроенное произведение корней уравнения

Теперь из первого равенства мы видим, что −b равно 18

Найдите утроенное произведение корней уравнения

Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

Найдите утроенное произведение корней уравнения

Этот же результат можно получить если в выражении Найдите утроенное произведение корней уравненияумножить первое равенство на −1

Найдите утроенное произведение корней уравнения

Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

Найдите утроенное произведение корней уравнения

Выполним умножение −18 на x . Получим −18x

Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

Запишем сумму и произведение корней:

Найдите утроенное произведение корней уравнения

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

Значит b = −10 , c = 16 . Отсюда:

Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Найдите утроенное произведение корней уравненияи Найдите утроенное произведение корней уравнения.

Запишем сумму и произведение корней:

Найдите утроенное произведение корней уравнения

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

Найдите утроенное произведение корней уравнения

Получилось уравнение Найдите утроенное произведение корней уравнения, которое является приведённым. В нём второй коэффициент равен Найдите утроенное произведение корней уравнения, а свободный член равен Найдите утроенное произведение корней уравнения. Тогда сумма и произведение корней будут выглядеть так:

Найдите утроенное произведение корней уравнения

Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

Найдите утроенное произведение корней уравнения

Получили приведённое квадратное уравнение. В нём второй коэффициент равен Найдите утроенное произведение корней уравнения, а свободный член Найдите утроенное произведение корней уравнения. Тогда по теореме Виета имеем:

Найдите утроенное произведение корней уравнения

Отсюда методом подбора находим корни −1 и

Найдите утроенное произведение корней уравнения

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

Найдите утроенное произведение корней уравнения

Получили уравнение Найдите утроенное произведение корней уравнения. Запишем сумму и произведение корней этого уравнения:

Найдите утроенное произведение корней уравнения

Отсюда методом подбора находим корни 2 и Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

Найдите утроенное произведение корней уравнения

Далее если −3x разделить на 2 , то полýчится Найдите утроенное произведение корней уравнения. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Далее если −2 разделить на 2 , то полýчится −1

Найдите утроенное произведение корней уравнения

Прирáвниваем получившееся выражение к нулю:

Найдите утроенное произведение корней уравнения

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Найдите утроенное произведение корней уравнения

Отсюда методом подбора находим корни 2 и Найдите утроенное произведение корней уравнения

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Немного теории.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Видео:ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать

ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравнения

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Видео:Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать

Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Видео:#123 Урок 48. Теорема Виета. Подбор корней квадратного уравнения. Алгебра 8 класс. Математика.Скачать

#123 Урок 48. Теорема Виета. Подбор корней квадратного уравнения.  Алгебра 8 класс. Математика.

24. Теорема Виета

Приведённое квадратное уравнение х 2 — 7х + 10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Докажем, что таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Рассмотрим приведённое квадратное уравнение. Обозначим второй коэффициент буквой р, а свободный член буквой q:

Дискриминант этого уравнения D равен р 2 — 4q.

Пусть D > 0. Тогда это уравнение имеет два корня:

Найдите утроенное произведение корней уравнения

Найдём сумму и произведение корней:

Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

При D = 0 квадратное уравнение х 2 + рх + q = 0 имеет один корень. Если условиться считать, что при D = 0 квадратное уравнение имеет два равных корня, то теорема будет верна и в этом случае. Это следует из того, что при D = 0 корни уравнения также можно вычислять по формуле

Найдите утроенное произведение корней уравнения

Доказанная теорема называется теоремой Виета по имени знаменитого французского математика Франсуа Виета.

Используя теорему Виета, можно выразить сумму и произведение корней произвольного квадратного уравнения через его коэффициенты.

Пусть квадратное уравнение ах 2 + bх + с = 0 имеет корни x1 и х2. Равносильное ему приведённое квадратное уравнение имеет вид

Найдите утроенное произведение корней уравнения

По теореме Виета

Найдите утроенное произведение корней уравнения

Справедливо утверждение, обратное теореме Виета:

Если числа m и n таковы, что их сумма равна -р, а произведение равно q, то эти числа являются корнями уравнения х 2 + рх + q = 0.

По условию m + n = — р, а mn = q. Значит, уравнение х 2 + рх + q = 0 можно записать в виде

х 2 — (m + n) х + mn = 0.

Подставив вместо х число m, получим:

m 2 — (m + n)m + mn = m 2 — m 2 — mn + mn = 0.

Значит, число m является корнем уравнения.

Аналогично можно показать, что число n также является корнем уравнения.

Рассмотрим примеры применения теоремы Виета и теоремы, обратной теореме Виета.

Пример 1. Найдём сумму и произведение корней уравнения

Решение: Дискриминант D = 25 — 4 • 3 • 2 = 1 — положительное число. Значит, уравнение имеет корни. Эти же корни имеет приведённое квадратное уравнение Найдите утроенное произведение корней уравнения. Значит, сумма корней уравнения Зх 2 — 5х + 2 = 0 равна Найдите утроенное произведение корней уравнения, а произведение равно Найдите утроенное произведение корней уравнения.

По теореме, обратной теореме Виета, можно проверять, правильно ли найдены корни квадратного уравнения.

Пример 2. Решим уравнение х 2 + Зх — 40 = 0 и выполним проверку по теореме, обратной теореме Виета.

Решение: Найдём дискриминант:

D = З 2 + 4 • 40 = 169.

По формуле корней квадратного уравнения получаем

Найдите утроенное произведение корней уравнения

Найдите утроенное произведение корней уравнения

Покажем, что корни уравнения найдены правильно. В уравнении х 2 + Зх — 40 = 0 коэффициент р равен 3, а свободный член q равен -40. Сумма найденных чисел -8 и 5 равна -3, а их произведение равно -40. Значит, по теореме, обратной теореме Виета, эти числа являются корнями уравнения х 2 + Зх — 40 = 0.

Пример 3. Найдём подбором корни уравнения

Решение: Дискриминант D = 1 — 4 • 1 • (-12) — положительное число. Пусть x1 и х2 — корни уравнения. Тогда

Если х1 и х2 — целые числа, то они являются делителями числа -12. Учитывая также, что сумма этих чисел равна 1, нетрудно догадаться, что x1 = -3 и x2 = 4.

Упражнения

  1. Найдите сумму и произведение корней уравнения:

Найдите утроенное произведение корней уравнения
Решите уравнение и выполните проверку по теореме, обратной теореме Виета:

Найдите утроенное произведение корней уравнения
Найдите корни уравнения и выполните проверку по теореме, обратной теореме Виета:

Найдите утроенное произведение корней уравнения
Найдите подбором корни уравнения:

Найдите утроенное произведение корней уравнения
Найдите подбором корни уравнения:

Найдите утроенное произведение корней уравнения

  • В уравнении x 2 + рх — 35 = 0 один из корней равен 7. Найдите другой корень и коэффициент р.
  • Один из корней уравнения x 2 — 13х + q = 0 равен 12,5. Найдите другой корень и коэффициент q.
  • Один из корней уравнения x 2 + bх + 24 = 0 равен 8. Найдите другой корень и коэффициент b.
  • Один из корней уравнения 10x 2 — ЗЗх + с = 0 равен 5,3. Найдите другой корень и коэффициент с.
  • Разность корней квадратного уравнения x 2 — 12х + q = 0 равна 2. Найдите q.
  • Разность корней квадратного уравнения x 2 + х + с = 0 равна 6. Найдите с.
  • Разность квадратов корней квадратного уравнения x 2 + 2x + q = 0 равна 12. Найдите q.
  • Известно, что сумма квадратов корней уравнения x 2 — Зx + а = 0 равна 65. Найдите а.
  • (Для работы в парах.) Не решая уравнения, выясните, имеет ли оно корни, и если имеет, то определите их знаки:

    Найдите утроенное произведение корней уравнения

    1) Сформулируйте теорему, на основании которой можно определить знаки корней.
    2) Распределите, кто выполняет задания а), в), д), а кто — задания б), г), е), и выполните их.
    3) Проверьте друг у друга, правильно ли выполнены задания. Исправьте ошибки, если они допущены.
    Докажите, что уравнение не может иметь корни одинаковых знаков:

    а) Зх 2 + 113х — 7 = 0;
    б) 5х 2 — 291x — 16 = 0.
    (Для работы в парах.) Уравнение х 2 + 5х + m = 0 имеет корни x1 и х2. Найдите, при каком значении m:

    а) сумма квадратов корней равна 35;
    б) сумма кубов корней равна 40.

    1) Обсудите подходы к выполнению задания а) и задания б).
    2) Распределите, кто выполняет задание а), а кто — задание б), и выполните их.
    3) Проверьте друг у друга правильность полученных ответов. Исправьте замеченные ошибки.
    При каких значениях х верно равенство:

    Найдите утроенное произведение корней уравнения

  • Катеты прямоугольного треугольника относятся как 8 : 15, а гипотенуза равна 6,8 м. Найдите площадь треугольника.
  • Отношение гипотенузы прямоугольного треугольника к одному из катетов равно Найдите утроенное произведение корней уравнения, другой катет равен 15 см. Найдите периметр треугольника.
  • Найдите стороны прямоугольника, если известно, что одна из них на 14 см больше другой, а диагональ прямоугольника равна 34 см.
  • 🔥 Видео

    Алгебра 8 класс (Урок№20 - Нахождение приближённых значений квадратного корня.)Скачать

    Алгебра 8 класс (Урок№20 - Нахождение приближённых значений квадратного корня.)

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

    Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать

    Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.

    Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать

    Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.

    🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

    🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

    Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать

    Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествах

    7 класс, 24 урок, Формулы сокращённого умноженияСкачать

    7 класс, 24 урок, Формулы сокращённого умножения
    Поделиться или сохранить к себе: