Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Точка пересечения прямых на плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямых на плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Найти точку пересечения прямой и плоскостиСкачать

Найти точку пересечения прямой и плоскости

Точка пересечения прямых на плоскости − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения прямых, заданных в общем виде.
  • 2. Точка пересечения прямых, заданных в каноническом виде.
  • 3. Точка пересечения прямых, заданных в параметрическом виде.
  • 4. Точка пересечения прямых, заданных в разных видах.
  • 5. Примеры нахождения точки пересечения прямых на плоскости.

1. Точка пересечения прямых, заданных в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

L1: A1x+B1y+C1=0,(1)
L2: A2x+B2y+C2=0(2)

Для нахождения точки пересечения прямых (1) и (2) нужно решить систему линейных уравнений (1) и (2) относительно переменных x,y. Для этого запишем систему (1),(2) в матричном виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(3)

Построим расширенную матрицу:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(4)

Приведем (4) к верхнему диагональному виду. Пусть A1≠0 . Тогда сложим строку 2 со строкой 1, умноженной на −A2/A1:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(5)
Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Если B’2=0 и С’2=0, то система линейных уравнений имеет множество решений. Следовательно прямые L1 и L2 совпадают. Если B’2=0 и С’2≠0, то система несовместна и, следовательно прямые параллельны и не имеют общей точки. Если же B’2≠0, то система линейных уравнений имеет единственное решение. Из второго уравнения находим y: y=С’2/B’2 и подставляя полученное значение в первое уравнение находим x: x=(−С1B1y)/A1. Получили точку пересечения прямых L1 и L2: M(x, y).

Подробнее о решении систем линейных уравнений посмотрите на странице метод Гаусса онлайн.

2. Точка пересечения прямых, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(6)
Найдите точки пересечения прямой заданной уравнением y 2 5x 4(7)

Приведем уравнение L1 к общему виду. Сделаем перекрестное умножение в уравнении (6):

p1(xx1)=m1(yy1)

Откроем скобки и сделаем преобразования:

p1xm1yp1x1+m1y1=0
A1x+B1y+C1=0(8)

Аналогичным методом получим общее уравнение прямой (7):

A2x+B2y+C2=0(9)

Терерь можно найти точку пересечения прямых L1 и L2 методом, описанным в параграфе 1.

3. Точка пересечения прямых, заданных в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(10)
Найдите точки пересечения прямой заданной уравнением y 2 5x 4(11)

Приведем уравнение прямой L1 к каноническому виду. Для этого из уравнений (10) найдем параметр t:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(12)

Из уравнений (12) следует:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Аналогичным образом можно найти каноническое уравнение прямой L2:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Как найти точку пересечения прямых, заданных в каноническом виде описано выше.

4. Точка пересечения прямых, заданных в разных видах.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

L1: A1x+B1y+C1=0,(13)
Найдите точки пересечения прямой заданной уравнением y 2 5x 4(14)
A1(x2+mt)+B1(y2+pt)+C1=0,(15)
A1x2+A1mt+B1y2+B1pt+C1=0,
Найдите точки пересечения прямой заданной уравнением y 2 5x 4(16)

Если числитель и знаменатель в (16) одновременно равны нулю, то любое значение t удовлетворяет уравнению (15), следовательно прямые L1 и L2 совпадают. Если знаменатель равен нулю а числитель отличен от нуля, то прямые L1 и L2 не пересекаются, т.е. они параллельны.

Пусть знаменатель не равен нулю. Подставляя полученное значение t в (14), получим координаты точки пересечения прямых L1 и L2.

5. Примеры нахождения точки пересечения прямых на плоскости.

Пример 1. Найти точку пересечения прямых L1 и L2:

L1: 2x+y+4=0,(17)
L2: x−3y+2=0.(18)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (17) и (18). Представим уравнения в матричном виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(19)

Решим систему линейных уравнений отностительно x, y. Для этого воспользуемся методом Гаусса. Получим:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Пример 2. Найти точку пересечения прямых L1 и L2:

L1: 2x+3y+4=0,(20)
Найдите точки пересечения прямой заданной уравнением y 2 5x 4(21)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (20) и (21). Представим уравнения в матричном виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(22)

Для решения (22) воспользуемся методом Гаусса. Получим:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

где λ− произвольное действительное число.

Имеем больше одного решения. Это означает, что прямые L1 и L2 совпадают.

Пример 3. Найти точку пересечения прямых L1 и L2:

L1: −5x+y+9=0,(23)
L2: −10x+2y−3=0,(24)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (23) и (24). Представим уравнения в матричном виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(25)

Применив метод Гаусса получим, что система (25) несовместна. Следовательно эти прямые не пересекаются, т.е. они параллельны.

Ответ. Прямые L1 и L2 не имеют общую точку, т.е. они параллельны.

Пример 4. Найти точку пересечения прямых L1 и L2:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(26)
L2: x+2y−9=0,(27)

Приведем, сначала, уравнение прямой (26) к общему виду:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (28) и (27). Представим уравнения в матричном виде:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4(29)

Решим систему линейных уравнений отностительно x, y:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Видео:№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.Скачать

№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.

Пересечение с осями онлайн

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек пересечения графика функции с осями координат.

Найти точки пересечения функции с осями координат:

При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:

График данной функции представлен на рисунке:

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Как следует из рисунка, наша функция пересекает ось в двух точках, а ось — в одной.

Сначала найдём точки пересечения функции с осью . Сразу отметим, что в этих точках координата . Поэтому для их поиска, нам нужно решить уравнение:

Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс: и . Стоит отметить, что задача поиска пересечений функции с осью эквивалентна задаче нахождения нулей функции.

Теперь найдём точку пересечения с осью ординат. В этой точке координата . Поэтому для их поиска, просто подставляем значение в нашу функцию:

Таким образом, мы нашли точку пересечения нашей функции с осью ординат .

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Другие полезные разделы:

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Пересечение прямых. Точка пересечения двух прямых

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Видео:23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямуюСкачать

23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямую

Точка пересечения двух прямых на плоскости

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Найдите точки пересечения прямой заданной уравнением y 2 5x 4

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Точка пересечения двух прямых в пространстве

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

📺 Видео

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Пересечения прямых, лучей, отрезковСкачать

Пересечения прямых, лучей, отрезков

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Нахождение координат точек пересечения графика функции с осями координатСкачать

Нахождение координат точек пересечения графика функции с осями координат

Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

Точки пересечения графиков линейных функций. 7 класс.Образовательный

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.Скачать

Не выполняя построения графиков, найдите координаты точки пересечения прямых. Алгебра 7 класс.

Найти абсциссу второй точки пересечения параболы и прямойСкачать

Найти абсциссу второй точки пересечения параболы и прямой

Лекция 2. Основная задача начертательной геометрии. Точка пересечения прямой с плоскостью.Скачать

Лекция 2. Основная задача начертательной геометрии. Точка пересечения прямой с плоскостью.

Выделение ФУНКЦИИ из уравнений прямых. Найти точку пересечения прямых, заданных уравнениямиСкачать

Выделение ФУНКЦИИ из уравнений прямых. Найти точку пересечения прямых, заданных уравнениями

Точки пересечения прямой с осями координат X и YСкачать

Точки пересечения прямой с осями  координат X и Y

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

ПЕРЕСЕЧЕНИЕ прямых | ТОЧКА пересечения | Линейные функцииСкачать

ПЕРЕСЕЧЕНИЕ прямых | ТОЧКА пересечения | Линейные функции
Поделиться или сохранить к себе: