Найдите сумму всех натуральных значений а при которых корень уравнения

1. Найдите сумму всех натуральных значений а, при которых корень уравнения (а — 1)х = 12 2?

Алгебра | 5 — 9 классы

1. Найдите сумму всех натуральных значений а, при которых корень уравнения (а — 1)х = 12 2.

Найдите сумму всех простых числа р и q, для которых р в квадрате — 2g в квадрате = 1.

Найдите сумму всех натуральных значений а при которых корень уравнения

1ое очень простое.

Нам надо, чтобы (a — 1) было больше 0, и при этом являлось делителем 12

Значит (a — 1) = 1, 2, 3, 4, 6, 12

Вычисляем значения а для каждого.

Это 2, 3, 4, 5, 7, 13

Складываем и получаем ответ.

Найдите сумму всех натуральных значений а при которых корень уравнения

Содержание
  1. Найдите три последовательных четных натуральных числа, сумма квадратов которых равна 2360?
  2. Найдите три последовательных натуральных числа, сумма квадратов которых равна 77?
  3. Найдите три последовательных натуральных числа сумма квадратов которых равна 50?
  4. Найдите 3 последовательных натуральных числа, сумма квадратов которых равна 1589?
  5. Найдите два последовательных натуральных числа сумма квадратов которых равна 761?
  6. Найдите два последовательных натуральных числа, сумма квадратов которых равна 761?
  7. Найдите три последовательных натуральных числа , сумма квадратов которых равна 50?
  8. Найдите три последовательных натуральных числа сумма квадратов которых равна 50?
  9. Найдите два последовательных натуральных числа, сумма квадратов которых равна 113?
  10. Найдите три последовательных чётных натуральных числа, сумма квадратов которых равна 9416?
  11. Квадратные уравнения с параметром
  12. Найдите сумму всех значений n (n принадлежит N)при которых корни уравнения nx=n^2-12 тоже будут натуральными числами.
  13. Решение на Задание 1184 из ГДЗ по Алгебре за 7 класс: Макарычев Ю.Н.
  14. Условие
  15. Решение 1
  16. Решение 2
  17. Популярные решебники
  18. 🔍 Видео

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Найдите три последовательных четных натуральных числа, сумма квадратов которых равна 2360?

Найдите три последовательных четных натуральных числа, сумма квадратов которых равна 2360.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Натуральные числа. Ряд натуральных чиселСкачать

Натуральные числа. Ряд натуральных чисел

Найдите три последовательных натуральных числа, сумма квадратов которых равна 77?

Найдите три последовательных натуральных числа, сумма квадратов которых равна 77.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Квадратный корень. 8 класс.Скачать

Квадратный корень. 8 класс.

Найдите три последовательных натуральных числа сумма квадратов которых равна 50?

Найдите три последовательных натуральных числа сумма квадратов которых равна 50.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Найдите 3 последовательных натуральных числа, сумма квадратов которых равна 1589?

Найдите 3 последовательных натуральных числа, сумма квадратов которых равна 1589.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Складываем все натуральные числа! - NumberphileСкачать

Складываем все натуральные числа! - Numberphile

Найдите два последовательных натуральных числа сумма квадратов которых равна 761?

Найдите два последовательных натуральных числа сумма квадратов которых равна 761.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Найдите два последовательных натуральных числа, сумма квадратов которых равна 761?

Найдите два последовательных натуральных числа, сумма квадратов которых равна 761.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Найдите три последовательных натуральных числа , сумма квадратов которых равна 50?

Найдите три последовательных натуральных числа , сумма квадратов которых равна 50.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Найти все p, при которых уравнение имеет целые корни. Задача с параметромСкачать

Найти все p, при которых уравнение имеет целые корни. Задача с параметром

Найдите три последовательных натуральных числа сумма квадратов которых равна 50?

Найдите три последовательных натуральных числа сумма квадратов которых равна 50.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Найдите сумму: 1+ 1/(1∙2)+1/(2∙3)+...+1/(n(n+1))Скачать

Найдите сумму: 1+ 1/(1∙2)+1/(2∙3)+...+1/(n(n+1))

Найдите два последовательных натуральных числа, сумма квадратов которых равна 113?

Найдите два последовательных натуральных числа, сумма квадратов которых равна 113.

Найдите сумму всех натуральных значений а при которых корень уравнения

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Найдите три последовательных чётных натуральных числа, сумма квадратов которых равна 9416?

Найдите три последовательных чётных натуральных числа, сумма квадратов которых равна 9416.

Вопрос 1. Найдите сумму всех натуральных значений а, при которых корень уравнения (а — 1)х = 12 2?, расположенный на этой странице сайта, относится к категории Алгебра и соответствует программе для 5 — 9 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.

Найдите сумму всех натуральных значений а при которых корень уравнения

51 потому что если среднее арифметическое = 52.

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

А). 15b ^ 3c ^ 4 / 20b ^ 5c = 3c ^ 3 / 4b ^ 2(сокращаем числитель и знаменатель на 5b ^ 3c) ; б). U ^ 2 + u / u ^ 5 = u * (u + 1) / u ^ 5 = (u + 1) / u ^ 4 ; в). B + 3c / b ^ 2 — 9c ^ 2 = (b + 3c) / (b + 3c) * (b — 3c) = 1 / (b — 3c).

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

14 км / ч скорость велосипедиста.

Найдите сумму всех натуральных значений а при которых корень уравнения

— 9x + 8x = 8 ; — x = 8 ; x = 8 / ( — 1) = — 8. Ответ : x = — 8.

Найдите сумму всех натуральных значений а при которых корень уравнения

НЕТ У НИЗ ПОРОД ЯСНО.

Найдите сумму всех натуральных значений а при которых корень уравнения

Мозаичный, черный бархат, гомобежевый, фиолетовый гегероэбони, белый Вильсона, гетеробежевый, эбони, Стандартный, Ангорская Королевская персидская шиншила.

Видео:Матан. Пределы для успешной сдачи зачёта | TutorOnline МатематикаСкачать

Матан. Пределы для успешной сдачи зачёта | TutorOnline Математика

Квадратные уравнения с параметром

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!

Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

— Что такое квадратное уравнение, как оно выглядит и как решается?

— Что такое дискриминант и куда его пристроить?

— Что такое теорема Виета и где её можно применить?

Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

Пример 1

Найдите сумму всех натуральных значений а при которых корень уравнения

Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.

Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Теперь надо приравнять наш дискриминант к нулю:

Найдите сумму всех натуральных значений а при которых корень уравнения

Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !

Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!

Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)

Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

Пример 2

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

0,5x 2 — 2x + 3a + 1,5 = 0

Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Выписываем в столбик наши коэффициенты a, b, c:

Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!

А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

Найдите сумму всех натуральных значений а при которых корень уравнения

Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

Найдите сумму всех натуральных значений а при которых корень уравнения

А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.

Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

Найдите сумму всех натуральных значений а при которых корень уравнения

Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

Найдите сумму всех натуральных значений а при которых корень уравнения

А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.

Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

Найдите сумму всех натуральных значений а при которых корень уравнения

Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Осталось раскрыть скобки и решить простенькое линейное неравенство:

Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

Например, такая задачка из реального варианта ЕГЭ:

Пример 3

Найдите сумму всех натуральных значений а при которых корень уравнения

Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

Найдите сумму всех натуральных значений а при которых корень уравнения

А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

Что ж, аккуратно расписываем наш дискриминант через параметр а:

А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

Найдите сумму всех натуральных значений а при которых корень уравнения

принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

Найдите сумму всех натуральных значений а при которых корень уравнения

Дальше составляем модуль разности этих самых корней:

Найдите сумму всех натуральных значений а при которых корень уравнения

Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

Найдите сумму всех натуральных значений а при которых корень уравнения

И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

Найдите сумму всех натуральных значений а при которых корень уравнения

Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

Найдите сумму всех натуральных значений а при которых корень уравнения

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

А далее по накатанной колее. Считаем дискриминант:

D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

Найдите сумму всех натуральных значений а при которых корень уравнения

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

Найдите сумму всех натуральных значений а при которых корень уравнения

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

Найдите сумму всех натуральных значений а при которых корень уравнения

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

Найдите сумму всех натуральных значений а при которых корень уравнения

Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

Найдите сумму всех натуральных значений а при которых корень уравнения

Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

Найдите сумму всех натуральных значений а при которых корень уравнения

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

Найдите сумму всех натуральных значений а при которых корень уравнения

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

Найдите сумму всех натуральных значений а при которых корень уравнения

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a

Упрощаем нашу совокупность с учётом главного условия a>0:

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот так. А теперь решаем самое обычное квадратное неравенство:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

Нас интересует промежуток между корнями. Стало быть,

Найдите сумму всех натуральных значений а при которых корень уравнения

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

Найдите сумму всех натуральных значений а при которых корень уравнения

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

Найдите сумму всех натуральных значений а при которых корень уравнения

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 (a

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

Найдите сумму всех натуральных значений а при которых корень уравнения

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

Найдите сумму всех натуральных значений а при которых корень уравнения

С учётом общего требования a

Найдите сумму всех натуральных значений а при которых корень уравнения

А дальше снова решаем обычное квадратное неравенство:

Найдите сумму всех натуральных значений а при которых корень уравнения

Найдите сумму всех натуральных значений а при которых корень уравнения

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

Найдите сумму всех натуральных значений а при которых корень уравнения

Осталось лишь пересечь этот интервал с нашим новым условием a

Найдите сумму всех натуральных значений а при которых корень уравнения

Вот и второй кусочек ответа готов:

Найдите сумму всех натуральных значений а при которых корень уравнения

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

Найдите сумму всех натуральных значений а при которых корень уравнения

с нулём. Вот так:

Найдите сумму всех натуральных значений а при которых корень уравнения

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

Найдите сумму всех натуральных значений а при которых корень уравнения

Готово дело. Эти два интервала — это пока ещё только решение неравенства

Найдите сумму всех натуральных значений а при которых корень уравнения

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

Найдите сумму всех натуральных значений а при которых корень уравнения

Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

Найдите сумму всех натуральных значений а при которых корень уравнения

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

Найдите сумму всех натуральных значений а при которых корень уравнения

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

Найдите сумму всех натуральных значений а при которых корень уравнения

Всё, задача полностью решена и можно записывать окончательный ответ.

Найдите сумму всех натуральных значений а при которых корень уравнения

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b, при которых уравнение

ax 2 + 3x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 — 4ax + 5a = 0

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2(a-2)x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Найдите сумму всех значений n (n принадлежит N)при которых корни уравнения nx=n^2-12 тоже будут натуральными числами.

Найдите сумму всех натуральных значений а при которых корень уравнения

Получите
x+(n^2-12)/n
1) Решите неравенство (n2-12/n) >=1
2) получите
x= n-12/n
САМИ?? ?
12/n -ЦЕЛОЕ И n>=4!!

получите
n=4
n=6
n=12
САМИ!! ! дальше.. .

Видео:Решаем примеры на вычисление с квадратными корнями.Скачать

Решаем примеры на вычисление с квадратными корнями.

Решение на Задание 1184 из ГДЗ по Алгебре за 7 класс: Макарычев Ю.Н.

Условие

Решение 1

Найдите сумму всех натуральных значений а при которых корень уравнения

Решение 2

Найдите сумму всех натуральных значений а при которых корень уравнения

Поиск в решебнике

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Популярные решебники

Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

Издатель: А.Г. Мордкович, 2013г.

Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

🔍 Видео

ГДЗ алгебра 8 класс Макарычев №551-600 / Решебник / GDZСкачать

ГДЗ алгебра 8 класс Макарычев №551-600 / Решебник / GDZ

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

✓ Учимся не бояться задания 18 | ЕГЭ. Математика. Профиль | #ТрушинLive #019 | Борис Трушин |Скачать

✓ Учимся не бояться задания 18 | ЕГЭ. Математика. Профиль | #ТрушинLive #019 | Борис Трушин |

Что такое математическая последовательность? | Математика | TutorOnlineСкачать

Что такое математическая последовательность?  | Математика | TutorOnline

Отбор корней по окружностиСкачать

Отбор корней по окружности

Метод математической индукцииСкачать

Метод математической индукции
Поделиться или сохранить к себе: