Часто требуется найти сумму квадратов (x1 2 +x2 2 ) или сумму кубов (x1 3 +x2 3 ) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:
Помочь в этом может теорема Виета:
Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:
Выразим через p и q:
1) сумму квадратов корней уравнения x 2 +px+q=0;
2) сумму кубов корней уравнения x 2 +px+q=0.
Решение.
1) Выражение x1 2 +x2 2 получится, если взвести в квадрат обе части равенства x1+x2=-p;
(x1+x2) 2 =(-p) 2 ; раскрываем скобки: x1 2 +2x1x2+ x2 2 =p 2 ; выражаем искомую сумму: x1 2 +x2 2 =p 2 -2x1x2=p 2 -2q. Мы получили полезное равенство: x1 2 +x2 2 =p 2 -2q.
2) Выражение x1 3 +x2 3 представим по формуле суммы кубов в виде:
Еще одно полезное равенство: x1 3 +x2 3 =-p·(p 2 -3q).
Примеры.
3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x1 2 +x2 2 .
Решение.
По теореме Виета сумма корней этого приведенного квадратного уравнения
x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:
x1 2 +x2 2 =p 2 -2q. У нас -p=x1+x2=3 → p 2 =3 2 =9; q=x1x2=-4. Тогда x1 2 +x2 2 =9-2·(-4)=9+8=17.
4) x 2 -2x-4=0. Вычислить: x1 3 +x2 3 .
Решение.
По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x1 3 +x2 3 =-p·(p 2 -3q)=2·(2 2 -3·(-4))=2·(4+12)=2·16=32.
Ответ: x1 3 +x2 3 =32.
Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.
5) 2x 2 -5x-7=0. Не решая, вычислить: x1 2 +x2 2 .
Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.
По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.
Решаем так же, как пример 3), используя равенство: x1 2 +x2 2 =p 2 -2q.
x1 2 +x2 2 =p 2 -2q=2,5 2 -2∙(-3,5)=6,25+7=13,25.
Ответ: x1 2 +x2 2 =13,25.
6) x 2 -5x-2=0. Найти:
Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x1 2 +x2 2 =p 2 -2q.
В нашем примере x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения в полученную формулу:
7) x 2 -13x+36=0. Найти:
Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.
У нас x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:
Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!
Видео:Найти значение суммы и произведения корней квадратного уравненияСкачать
Найдите сумму обратных величин корней уравнения x2 px q
OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .
На вопросы могут отвечать также любые пользователи, в том числе и педагоги.
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Найдите сумму обратных величин корней уравнения x2 px q
Известно, что квадратное уравнение x 2 + px + q = 0 имеет два различных натуральных корня.
а) Найдите все возможные значения p, если q = 26.
б) Найдите все возможные значения q, если q + p = 72.
в) Найдите все возможные значения корней уравнения, если q 2 − p 2 = 2812.
а) По теореме Виета произведение этих корней равно 26, поэтому сами они равны 13 и 2 или 26 и 1. При этом откуда p = −15 или p = −27.
б) Получаем уравнение откуда значит, и или наоборот. В любом случае
Числа и отличаются друг от друга на чётное число, поэтому они одной чётности, поэтому каждое из них делится на 2 и не делится на 4. Кроме того, поэтому остаются такие варианты:
а) и
б) и
Рассмотрим первый случай: Натуральными решениями второго уравнения являются пары чисел (4; 2) или (2; 4), которые не являются решениями первого уравнения. Поэтому этот случай не приводит к решениям.
Рассмотрим второй случай: Всевозможные натуральные решения второго уравнения это (40; 2), (14; 4), (4; 14), (2; 40). Первому уравнению удовлетворяют только пары (14; 4) и (4; 14).
Ответ: а) −27 или −15; б) 148; в) 4 и 14.
Частично дублирует задание 526680 из основной волны ЕГЭ 2019 года.
Критерии оценивания выполнения задания | Баллы |
---|---|
Верно получены результаты пунктов а, б, в. | 4 |
Верно получены результаты пунктов (а или б) и в. | 3 |
Верно получены результаты пунктов (а и б) или в | 2 |
Верно получены результаты пунктов а или б. | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Максимальный балл | 4 |
Аналоги к заданию № 526680: 526701 562497 Все
Видео:Не решая квадратное уравнение, найдите сумму кубов его корнейСкачать
Теорема Виета
Теорема Виета:
Сумма корней приведённого квадратного уравнения
равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену
Если приведённое квадратное уравнение имеет вид
то его корни равны:
,
где D = p 2 — 4q. Чтобы доказать теорему, сначала найдём сумму корней:
,
а теперь найдём их произведение:
Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:
называются формулами Виета.
Примечание: если дискриминант равен нулю (D = 0), то подразумевается, что уравнение имеет не один корень, а два равных корня.
Видео:#67. Сумма квадратов корней в уравнении с параметром!Скачать
Обратная теорема
Теорема:
Если сумма двух чисел равна -p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:
Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Решение примеров
Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.
Пример 1. Найти корни уравнения:
Решение: Так как
очевидно, что корни равны 1 и 2:
Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:
1 2 — 3 · 1 + 2 = 0
2 2 — 3 · 2 + 2 = 0.
Пример 2. Найти корни уравнения:
Методом подбора находим, что корни равны -3 и -5:
С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.
Пример 1. Составить квадратное уравнение по его корням:
Решение: Так как x1 = -3, x2 = 6 корни уравнения x 2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:
Следовательно, искомое уравнение:
Пример 2. Записать приведённое квадратное уравнение, имеющее корни:
📸 Видео
ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Свойства квадратного корня. Уравнение х2=а, 8 классСкачать
Математика Один из корней уравнения 3x^2 +5x +2m =0 равен -1. Найдите второй корень.Скачать
САМЫЙ ПРОСТОЙ СПОСОБ ПОНЯТЬ ТЕОРЕМУ ВИЕТА #shorts #математика #егэ #огэ #теорема #теоремавиетаСкачать
Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
Решение биквадратных уравнений. 8 класс.Скачать
Найдите корень уравнения 2^(4-2x) = 64Скачать
Алгебра 8 класс. Сумма корнейСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
При каких значениях а сумма квадратов корней уравнения x² + ax + a - 2 = 0 минимальна?Скачать
Теорема Виета. 8 класс.Скачать
ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать