Найдите сумму и произведение корней уравнения x2 17x 60 0

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Немного теории.

Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Видео:Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Видео:Уравнение x^2+px+q=0 имеет корни -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

Уравнение x^2+px+q=0 имеет корни  -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Видео:№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема ВиетаСкачать

№1 Квадратное уравнение х^2+x-6=0 Дискриминант, теорема Виета

Найдите сумму и произведение корней уравнения x2 17x 60 0

OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .

На вопросы могут отвечать также любые пользователи, в том числе и педагоги.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

Видео:Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Калькулятор Уравнений. Решение Уравнений Онлайн

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать

Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)

Проверочная работа по теореме Виета
методическая разработка по алгебре (8 класс) на тему

Найдите сумму и произведение корней уравнения x2 17x 60 0

Данная разработка соержит проверочную работу по алгебре для 8 класса по теореме Виета

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Скачать:

ВложениеРазмер
proverochnaya_rabota_dlya_8_klassa_po_teme.doc46 КБ

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Предварительный просмотр:

Проверочная работа для 8 класса по теме: Теорема Виета.

  1. Найдите сумму и произведение корней уравнения: а) х 2 — 16х +28 =0; б) х 2 — 12х – 45 = 0; в) 3х 2 — 6х -7 = 0; г) 8х – 2х 2 +3 =0.
  2. Запишите квадратное уравнение, корни которого равны: х 1 = 2, х 2 = 5.
  3. Один из корней квадратного уравнения равен 2. Найдите второй корень уравнения х 2 +17х – 38 = 0.
  4. Определите знаки корней уравнения, не решая уравнения: а) х 2 +10х +17 = 0; б) 3у 2 – 23у + 21 = 0; в) х 2 + х +8 = 0.
  5. Найдите подбором корни уравнения: а) у 2 + 8у +15 = 0; б) с 2 – 3с – 10 =0.
  6. Произведение двух натуральных чисел равно 273. Найдите эти числа, если одно из них на 8 больше другого.

Проверочная работа для 8 класса по теме: Теорема Виета.

  1. Найдите сумму и произведение корней уравнения: а) х 2 — 17х +60 =0; б) х 2 + 3х – 40 = 0; в) 5х 2 +х -3 = 0; г) 4х 2 — 5х =0.
  2. Запишите квадратное уравнение, корни которого равны: х 1 = — 1, х 2 = 3.
  3. Один из корней квадратного уравнения равен 2. Найдите второй корень уравнения 7х 2 — 11х – 6 = 0.
  4. Определите знаки корней уравнения, не решая уравнения: а) х 2 -13х -11 = 0; б) 5у 2 + 17у — 93 = 0; в) 3х 2 — х – 3 = 0.
  5. Найдите подбором корни уравнения: а) у 2 — 5у +6 = 0; б) с 2 – 8с – 9 =0.
  6. Площадь прямоугольника 480дм 2 . Найдите его стороны, если периметр прямоугольника равен 94дм.

Видео:Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

По теме: методические разработки, презентации и конспекты

Сценарий урока по алгебре «Теорема Виета»

Данный урок является первым по теме “Теорема Виета”.Он проводится по методике развивающего обучения, основным требованием которой является то, что знания не предоставляются учителем в готовом ви.

Приведенное квадратное уравнение. Теорема Виета.

Систематизировать знания, выработать умение выбирать рациональный способ решения квадратных уравнений, расширить и углубить представления учащихся о решении уравнений, организовать поисковую деятельно.

Найдите сумму и произведение корней уравнения x2 17x 60 0

Квадратные уравнения. Теорема Виета

Обобщающий урок в форме игры «Звездный час».

Тема урока: Теорема Виета

Презентация к уроку.

Решение квадратных уравнений общего вида на основе теоремы, обратной теореме Виета

В данной публикации рассматривается метод быстрого решения квадратных уравнений общего вида. Дан алгоритм решения и метод краткости рассуждений. — Наличие своих технологических «находок».

Найдите сумму и произведение корней уравнения x2 17x 60 0

Устная работа по теме:»Теорема Виета» в 8 классе.

Данная презентация предназначена для отработки навыков в быстром нахождении корней квадратного уравнения.

Найдите сумму и произведение корней уравнения x2 17x 60 0

Самостоятельная работа по теме «Теорема Виета»

Самостоятельная работа составлена в двух вариантах. Задания ориентированы на учебник «Алгебра 8»,автор Ю.Н. Макарычев и др. Самостоятельная работа выполнена в виде карточек, удобных .

📹 Видео

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

УРАВНЕНИЕ х²=а корни уравненияСкачать

УРАВНЕНИЕ х²=а корни уравнения

Арифметическая прогрессия 9 класс. Формулы, о которых вы не знали | МатематикаСкачать

Арифметическая прогрессия 9 класс. Формулы, о которых вы не знали | Математика

ЕГЭ по математике // Задание 5, 7 // Неполное квадратное уравнениеСкачать

ЕГЭ по математике // Задание 5, 7 // Неполное квадратное уравнение

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминант

🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

🔴 Решите уравнение x^2=-2x+24 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Решите уравнение x^2=-2x+24 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

#123 Урок 48. Теорема Виета. Подбор корней квадратного уравнения. Алгебра 8 класс. Математика.Скачать

#123 Урок 48. Теорема Виета. Подбор корней квадратного уравнения.  Алгебра 8 класс. Математика.
Поделиться или сохранить к себе: