Найдите общее решение уравнения x y dx xdy 0

Математика модуль 12 — ответы

Ответы на модуль 12 (ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) по предмету математика.

1) Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?

частным решением

2) Найдите общее решение уравнения (x+y)dx+xdy=0

Найдите общее решение уравнения x y dx xdy 0

3) При решении каких уравнений используют подстановку Найдите общее решение уравнения x y dx xdy 0

при решении однородных уравнений

4) Найдите общее решение уравнения xy 2 dy=(x 3 +y 3 )dx

5) Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли

Найдите общее решение уравнения x y dx xdy 0

6) Найдите общее решение уравнения y — 9y = e 2 x

Найдите общее решение уравнения x y dx xdy 0

7) Найдите общее решение уравнения Найдите общее решение уравнения x y dx xdy 0

8) Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0

9) Найдите общее решение уравнения yy= 0

10) Найдите общее решение уравнения Найдите общее решение уравнения x y dx xdy 0

11) Среди перечисленных дифференциальных уравнений укажите однородное уравнение

12) Найдите общее решение уравнения y— 4y+ 3y= 0

13) Найдите общее решение уравнения y = cos x

Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения по-шагам

Видео:y(1+xy)dx+x(1-xy)dy=0 #NonExact L575 @MathsPulseChinnaiahKalpanaСкачать

y(1+xy)dx+x(1-xy)dy=0 #NonExact L575 @MathsPulseChinnaiahKalpana

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

💡 Видео

(xySinxy+Cosxy)ydx+(xySinxy-Cosxy)xdy=0 #NonExact L585 @MathsPulseChinnaiahKalpanaСкачать

(xySinxy+Cosxy)ydx+(xySinxy-Cosxy)xdy=0 #NonExact L585 @MathsPulseChinnaiahKalpana

Найти общее решение уравнения в частных производных первого порядка.Скачать

Найти общее решение уравнения в частных производных первого порядка.

Solve: `ydx-xdy=xydy`Скачать

Solve: `ydx-xdy=xydy`

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1Скачать

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1

Дифференциальное уравнение от Бермана ★ Решите дифференциальное уравнение 2-го порядка ★ xy''=y'Скачать

Дифференциальное уравнение от Бермана ★ Решите дифференциальное уравнение 2-го порядка ★ xy''=y'

Solve (i) `xdx +ydy + (xdy - ydx)/(x^(2) + y^(2)) = 0` (ii) `y(1+xy) dx - xdy = 0`Скачать

Solve (i) `xdx +ydy + (xdy - ydx)/(x^(2) + y^(2)) = 0` (ii) `y(1+xy) dx - xdy = 0`

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Общее и частное решение дифференциального уравненияСкачать

Общее и частное решение дифференциального уравнения

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.
Поделиться или сохранить к себе: