28. Найдите наименьшее целое значение k, при котором уравнение х 2 — 2(k + 2)х + 11 + k 2 = 0 имеет два различных действительных корня.
Общий вид квадратного уравнения: ax 2 + bx + с = 0, где a — I коэффициент, b — II коэффициент, с — III коэффициент или свободный член.
Квадратное уравнение имеет два различных действительных корня, если у него дискриминант больше 0 (D > 0).
Квадратное уравнение имеет один единственный корень, если у него дискриминант равен 0 (D = 0).
Квадратное уравнение не имеет действительных корней, если у него дискриминант меньше 0 (D 2 — 4ac.
В данном случае I коэффициент a = 1, II коэффициент b = -2(k+2), III коэффициент с = 11+k 2 .
Так как по условию уравнение имеет два различных действительных корня, то его дискриминант больше 0. Значит:
(-2(k + 2)) 2 — 4*1*(11 + k 2 ) > 0.
Упрощаем полученное выражение:
4(k + 2) 2 — 4(k 2 + 11) > 0. Делим обе части на 4:
(k + 2) 2 — (k 2 + 11) > 0.
k 2 + 4k + 4 — k 2 — 11 > 0.
Так как требуется найти наименьшее целое k, то при k > 1,75 наименьшее целое 2.
Если вы заметили орфографическую ошибку, пожалуйста, выделите ее мышью и нажмите Ctrl+Enter
Видео:Наибольшее и наименьшее значение функции. 10 класс.Скачать
Исследование корней квадратного уравнения
Разделы: Математика
«Уравнение – это золотой ключ,
открывающий все математические сезамы»
С. Коваль
Цели урока:
- систематизирование и обобщение знаний учащихся по теме;
- развитие математического мышления;
- повышение интереса к предмету.
План урока:
- Орг. момент
- Устный опрос: а) работа по опроснику; б) обсуждение
- Систематизация и обобщение знаний
- Самостоятельная работа
- Домашнее задание
- Итог урока
Ход урока
1. Учитель сообщает цели и задачи урока.
Учитель: Как вы думаете, почему эпиграфом нашего урока я взяла слова С. Коваль?
2. Работа по опроснику (3 минуты) и обсуждение ответов (5 минут).
7. 3х 4 – х 2 + 16 = 0
5. х 4 – 7х 2 – 2 = 0
6. -2х 2 + 5х + 9 = 0
9. 6х 2 + 3х + 8 = 0
- Линейные уравнения: (1, 2, 4) (№3 ?)
- Биквадратные: (5, 7)
- Какие уравнения имеют один корень? (1)
- Какие уравнения не имеют корней? (2, 3, 7, 9. Почему?)
- Какие уравнения имеют корни разного знака? (6, 8)
- Какие уравнения имеют бесконечное множество корней? (4)
- Какие уравнения могут иметь 4 корня? (5)
3. Учитель: Чем отличаются уравнения записанные на доске от уравнений представленные в опроснике?
x 2 – 4х + k = 0, 5nx 2 – x + 5n = 0, kx 2 + 2(k + 1)x + k + 3 = 0
Что такое параметр?
В словаре Ушакова: «ПАРАМЕТР
параметра, м. (от греч. parametreo – меряю, сопоставляя). 1. Величина, входящая в математическую формулу и сохраняющая постоянное значение в пределах одного явления или для данной частной задачи, но при переходе к другому явлению, к другой задаче меняющая свое значение (мат.).»
- При каких значениях a уравнение 3x 2 – 6х + a = 0 имеет два положительных корня?
- При каких значениях m уравнение x 3 – 4x 2 + mx = 0 имеет два различных корня?
- Найти наибольшее целое значение k, при котором уравнение x 2 +x – k = 0 не имеет действительных корней?
- Найти наименьшее целое значение a, при котором уравнение x 2 – 2 (a + 2) x = 1 2 + a 2 = 0 имеет два различных действительных корня?
- При каком значении a уравнение ax 2 – (a + 1)x +2a – 1 = 0 имеет равные корни?
Решим уравнения № 1 и 2.
№1. 3х 2 – 6х + а = 0
1) Первое условие: два корня, следовательно, D > 0, т. е. D = 36 – 12а > 0, а 2 – 2х + a/3 =0.
3) а > 0 и а 3 – 4x 2 + mx = 0.
1) х (х 2 – 4х + m) = 0
х = 0 или х 2 – 4х + m = 0 – это уравнение должно иметь один корень, это возможно при D = 0, т.е. 16 -4m = 0, m = 4
2) Если m = 0 , то х 3 – 4х 2 = 0, х2 (х -4) = 0 – два корня.
Ответ. Уравнение имеет два корня при m = 0 и m = 4.
4. Уравнения № 3, 4, 5 решаете самостоятельно.
№3. х 2 + х – k = 0 – уравнение не имеет корней при D 2 – 2(а + 2)х + 12 + а 2 = 0 – уравнение имеет два действительных корня при D >0, т.е. 4(а + 2)2 – 4(а 2 + 12) > 0/ : 4
а 2 + 4а + 4 – а 2 – 12 > 0, 4а > 8, а > 2 – наименьшее целое значение а = 3.
Ответ. Наименьшее целое значение а = 3.
№5. ах 2 – (а + 1)х + 2а – 1 = 0 – уравнение должно иметь равные корни, следовательно, а ≠ 0, иначе уравнение обращается в линейное.
D = 0, т. е. (а + 1)2 – 4а(2а – 1) = 0 , а 2 + 2а + 1 – 8а 2 + 4а = 0,
-7а 2 + 6а + 1 =0, D = 36 + 28 = 64, а1 = 1, а2 = (-1/7).
Дополнительно:
№6. При каких значениях m вершины парабол y = x 2 – 4mx + m и y = -x 2 + 8mx + 4 расположены по одну сторону от оси х.
Решение. Найдем координаты вершины первой параболы y = x 2 – 4mx + m : х0 =– = 2m, y0 = 4m 2 – 4m*2m +m = – 4m 2 + m.
Найдем координаты вершины второй параболы y = -x 2 + 8mx + 4:
x0 = -8m/-2 4m, y0 = -16m 2 + 32m 2 + 4 = 16m 2 + 4, т.к. 16m 2 + 4 > 0 при любых m. Вершины парабол расположены по одну сторону от оси х, следовательно, и – 4m 2 + m > 0, m (-4m + 1) > 0. Решая методом интервалов, получим m ∊ (0; 1/4).
Ответ. При m ∊ (0; 1/4 ) вершины парабол расположены по одну сторону от оси х.
5. Домашнее задание.
6. Итог урока.
- Можно ли применять свойства корней квадратного уравнения для квадратных уравнений с параметрами?
- Как определить имеет ли уравнение с параметром корни или нет?
- Если речь идет о корнях одного знака или разного, что нужно применить для ответа на поставленный вопрос?
Урок хочется завершить словами Госсера:
Посредством уравнений, теорем
Он уйму всяких разрешил проблем:
И засуху предсказывал, и ливни –
Поистине его познанья дивны.
Видео:Найдите наименьшее значение x, удовлетворяющее системе ... | ОГЭ 2017 | ЗАДАНИЕ 8 | ШКОЛА ПИФАГОРАСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Калькулятор онлайн.
Решение неравенств: линейные, квадратные и дробные.
Программа решения неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Причём, если в процессе решения неравенства нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5y +1/7y^2
Результат: ( 3frac — 5frac y + fracy^2 )
При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)
Нажмите на кнопку для изменения типа неравенства.
Выберите нужный знак неравенства и введите многочлены в поля ниже.
Решить неравенство
Видео:Найдите наименьшее значение выражения и значения x и y, при которых оно достигаетсяСкачать
Немного теории.
Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.
Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.
Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), frac ) верное числовое неравенство, 0,23 > 0,235 — неверное числовое неравенство.
Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 — неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.
Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.
Далее вы узнаете свойства неравенств, научитесь решать неравенства. Полученные умения вам понадобятся при изучении последующего материала, для решения практических задач, а также задач физики и геометрии.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Числовые неравенства
Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.
Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.
Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.
Если а больше b, то пишут: а > b; если а меньше b, то пишут: а b означает, что разность а — b положительна, т.е. а — b > 0. Неравенство а b, a = b, a , = или b и b > с, то а > с.
Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.
Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.
При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй — более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.
При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:
Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.
Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d — положительные числа, то ac > bd.
Неравенства со знаком > (больше) и 1/2, 3/4 b, c и и b, quad ax
Видео:Наименьшее целое решение. Математика 11 класс. Решение неравенств.Скачать
Решение неравенств второй степени с одной переменной
Неравенства вида
( ax^2+bx+c >0 ) и ( ax^2+bx+c 0 ) или ( ax^2+bx+c 0 или вниз при a 0 или в нижней при a 0 ) ) или ниже оси x (если решают неравенство
( ax^2+bx+c
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Решение неравенств методом интервалов
Рассмотрим функцию
f(x) = (х + 2)(х — 3)(х — 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки ( (-infty; -2), ; (-2; 3), ; (3; 5) ) и ( (5; +infty) )
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х — 3)(х — 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
( (-infty; -2) ) | ( (-2; 3) ) | ( (3; 5) ) | ( (5; +infty) ) | |
x+2 | – | + | + | + |
x-3 | – | – | + | + |
x-5 | – | – | – | + |
Отсюда ясно, что:
если ( x in (-infty;-2) ), то f(x) 0;
если ( x in (3;5) ), то f(x) 0.
Мы видим, что в каждом из промежутков ( (-infty; -2), ; (-2; 3), ; (3; 5), ; (5; +infty) ) функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 | 3 | 5 |
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) . (x-xn),
где x–переменная, а x1, x2, . xn – не равные друг другу числа. Числа x1, x2, . xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
-4 | 0 | 0,5 |
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
Ответ:
( x in left( -4; ; 0 right) cup left( 0,5; ; +infty right) )
или
( -4 0,5 )
Наносим на числовую ось нули и точки разрыва функции:
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
Ответ:
( x in left( -infty; ; 1 right) cup left[ 4; ; +infty right) )
или
( x
📺 Видео
Найдите наименьшее значение выражения |6x + 5y +7| + |2x + 3y + 1|Скачать
Найдите наименьшее и наибольшее значение выраженияСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать
Найти наименьшее значение выражения. Задача с параметромСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
310 Алгебра 9 класс. При каких значениях в Уравнение имеет 2 корня.Скачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Математика| Разложение квадратного трехчлена на множители.Скачать
Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать
Математический анализ, 13 урок, Наибольшее и наименьшее значение функции на отрезкеСкачать
#39 Урок 29. Решение уравнений. Нахождение параметра. Математика 6 класс.Скачать
Как решать неравенства? Часть 1| МатематикаСкачать