Найдите корень уравнения log9 3 2x+9 = 2.
Источник: Ященко ЕГЭ 2022 (36 вар)
log 9 3 2x+9 = 2
по определению логарифма:
9 2 = 3 2x+9
(3 2 ) 2 = 3 2x+9
2·2 = 2x + 9
4 = 2x + 9
4 – 9 = 2х
–5 = 2х
x=frac
x = –2,5
Ответ: –2,5 .
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 3.2 / 5. Количество оценок: 21
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время
В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.
- Решение логарифмических уравнений
- Задание №7 ЕГЭ по математике базового уровня
- Простейшие уравнения
- Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня
- Вариант 7МБ1
- Вариант 7МБ2
- Вариант 7МБ3
- Вариант 7МБ4
- Вариант 7МБ5
- Вариант 7МБ6
- Вариант 7МБ7
- Вариант 7МБ8
- Вариант 7МБ9
- Вариант 7МБ10
- Вариант 7МБ11
- Вариант 7МБ12
- Вариант 7МБ13
- Вариант 7МБ14
- Вариант 7МБ15
- Вариант 7МБ16
- 💡 Видео
Видео:ЕГЭ номер 13 Как решать смешанное уравнение log9(3^2x+5корень(2)sinx-6cos^2(x)-2)=x Как решать ОДЗСкачать
Решение логарифмических уравнений
Данный калькулятор позволяет найти решение логарифмических уравнений.
Логарифмическое уравнение – это уравнения, в которых переменная величина находится под знаком логарифма. Логарифмическая функция всегда монотонна и может принимать любые значения. Кроме того, переменный аргумент логарифма должен быть больше нуля и переменное основание логарифма должно быть положительным и не равным единице.
При решении логарифмических уравнений зачастую необходимо логарифмировать или потенцировать обе части уравнения. Логарифмировать алгебраическое выражение — выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение. Потенцирование – нахождение выражения, от которого получен результат логарифмирования.
Для того чтобы найти корни логарифмического уравнения, нужно ввести это уравнение в ячейку и нажать на кнопку «Вычислить». В ответе отображаются корни уравнения и график логарифмической функции.
Калькулятор поможет найти решение логарифмических уравнений онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Основные функции |
- : x^a
Видео:🔴 Найдите корень уравнения log5 (-2x+9)=2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Задание №7 ЕГЭ по математике базового уровня
Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Простейшие уравнения
В задании №7 базового уровня ЕГЭ по математике необходимо решить
Простейшие (Protozoa) — тип одноклеточных животных.
Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня
Вариант 7МБ1
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81
После преобразования выражение примет
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
x 2 + 6x + 9 = x 2 – 18x + 81
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 6x – x 2 + 18x = 81 – 9
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x
Выражение примет вид:
Преобразуем правую часть. 81 – 9 = 72
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ2
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 8) 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64
После преобразования выражение примет вид:
x 2 + 4x + 4 = x 2 – 16x + 64
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 4x – x 2 + 16x = 64 – 4
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x
Выражение примет вид:
Преобразуем правую часть. 64 – 4 = 60
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ3
Алгоритм выполнения
- Перенести вычитаемое в правую сторону равенства с противоположным знаком.
- Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
- Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
- Решить уравнение относительно x.
Решение:
Вариант 7МБ4
Найдите корень уравнения 3 x− 3 = 81.
Алгоритм выполнения
- Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
- Когда основания равны, можно приравнять значения степеней
Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.
Значит, 81 это три в четвертой степени. Запишем это:
Решение:
Ответ: 7
Вариант 7МБ5
Найдите корень уравнения log2( x − 3) = 6 .
Алгоритм выполнения
- Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:
Вариант 7МБ6
Найдите отрицательный корень уравнения x 2 − x − 6 = 0.
Алгоритм выполнения
- Вычислить дискриминант
- Найти корни
- Выбрать необходимый корень
Решение:
D = -(1) 2 − 4 • 1 • (-6) = 25
Так как нам необходим отрицательный корень – ответ -2
Вариант 7МБ7
Решите уравнение х 2 = –2х + 24.
Если уравнение имеет больше одного
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
- Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
- Записываем в качестве ответа большее из полученных 2 чисел.
Решение:
Поскольку требуется указать больший из корней, то ответом будет 4.
Вариант 7МБ8
Найдите корни уравнения 4 х–6 = 64.
Алгоритм выполнения
- Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
- Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
- Находим корень ур-ния.
Решение:
Вариант 7МБ9
Найдите корень уравнения log3 (2x – 5) = 2.
Алгоритм выполнения
- Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
- Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ10
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
- Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ11
Найдите корень уравнения (х – 8) 2 = (х – 2) 2 .
Алгоритм выполнения
- Раскрываем скобки слева и справа, используя ф-
Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).
Решение:
х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2
Вариант 7МБ12
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
- Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
- Решаем его.
Решение:
Вариант 7МБ13
Решите уравнение х 2 – 25 = 0
Алгоритм выполнения
- Переносим 25 в правую часть ур-ния.
- Выражаем из ур-ния х путем извлечения корня из 25.
- Определяем корни, сравниваем их, определяем больший.
Решение:
Для ответа берем 5.
Вариант 7МБ14
Найдите корень уравнения
Алгоритм выполнения
- Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ15
Найдите корень уравнения
Алгоритм выполнения
- Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
- Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
- Решаем его.
Решение:
Вариант 7МБ16
Найдите корень уравнения
💡 Видео
🔴 Найдите корень уравнения 2(3-2x)-7=-3x+8 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать
ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать
🔴 Найдите корень уравнения (1/7)^(x-5)=49 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Найдите корень уравнения 2^(4-2x) = 64Скачать
Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать
ЕГЭ профиль, тип 9Скачать
9 вариант ЕГЭ Ященко 2024 математика профильный уровеньСкачать
ОГЭ для НОЛИКОВ, Уравнения N-9Скачать
Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать
Найдите корень уравнения 16^(x-9)=1/2Скачать
Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать
🔴 Найдите корень уравнения x^2-7x-18=0 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать