Найду корень уравнения: x^2=10*x-16
- Решение
- x²-10x+16=0 (x в квадрате минус 10 умножить на x плюс 16 равно 0) решить через дискриминант и по теореме Виета, найти корни.
- Калькулятор квадратных уравнений
- Введите данные:
- Округление:
- Уравнение:
- Дискриминант:
- Корни квадратного уравнения:
- Решение по теореме Виета
- Преобразование в приведённый вид
- Разложение на множители
- График функции y = x²-10x+16
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение квадратного уравнения.
- Немного теории.
- Квадратное уравнение и его корни. Неполные квадратные уравнения
- Формула корней квадратного уравнения
- Теорема Виета
- 💡 Видео
Решение
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
$$x^ = 10 x — 16$$
в
$$x^ + left(16 — 10 xright) = 0$$
Это уравнение вида
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_ = frac <sqrt- b>$$
$$x_ = frac <- sqrt- b>$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = 1$$
$$b = -10$$
$$c = 16$$
, то
Видео:Найдите корень уравнения 16^(x-9)=1/2Скачать
x²-10x+16=0 (x в квадрате минус 10 умножить на x плюс 16 равно 0) решить через дискриминант и по теореме Виета, найти корни.
Видео:Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать
Калькулятор квадратных уравнений
Введите данные:
Округление:
Уравнение:
(a * x^ + b * x + c) = (1 * x^ — 10 * x + 16) = 0
Дискриминант:
(D = b^ — 4 * a * c) = ((-10)^ — 4 * 16) = (100 — 64) = 36
Корни квадратного уравнения:
Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Решение по теореме Виета
Преобразование в приведённый вид
Наше уравнение уже является приведенным так как коэффициент a = 1
Итого, имеем приведенное уравнение:
(x^ -10 * x + 16 = 0)
Теорема Виета выглядит следующим образом:
(x_*x_=c)
(x_+x_=-b)
Мы получаем следующую систему уравнений:
(x_*x_=16)
(x_+x_=10)
Методом подбора получаем:
(x_ = 8)
(x_ = 2)
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Разложение на множители
Разложение происходит по формуле:
(a*(x-x_)*(x-x_) = 0)
То есть у нас получается:
(1*(x-8)*(x-2) = 0)
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
График функции y = x²-10x+16
Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Решите уравнение 1/(x-1)=-5. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать
Калькулятор онлайн.
Решение квадратного уравнения.
С помощью этой математической программы вы можете решить квадратное уравнение.
Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).
Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )
При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)
Видео:🔴 Найдите корень уравнения √(13-x)=3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Немного теории.
Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать
Квадратное уравнение и его корни. Неполные квадратные уравнения
Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.
Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).
Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.
В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.
Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.
Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )
Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.
Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.
Рассмотрим решение уравнений каждого из этих видов.
Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )
Так как ( c neq 0 ), то ( -frac neq 0 )
Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.
Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.
Видео:🔴 Найдите корень уравнения 4^(x-11)=1/16 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Формула корней квадратного уравнения
Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.
Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.
Решим квадратное уравнение ax 2 +bx+c=0
Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )
Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )
Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )
Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )
Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D
Видео:🔴 Найдите корень уравнения (1/7)^(x-5)=49 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Теорема Виета
Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )
💡 Видео
🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Уравнение x^2+px+q=0 имеет корни -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать
🔴 Найдите корень уравнения x^2-7x-18=0 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать