Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Парабола: формулы, примеры решения задач

Определение параболы. Параболой называется множество всех точек плоскости, таких, каждая из которых находится на одинаковом расстоянии от точки, называемой фокусом, и от прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы имеет вид:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x,

где число p, называемое параметром параболы, есть расстояние от фокуса до директрисы.

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

На чертеже линия параболы — бордового цвета, директриса — ярко-красного цвета, расстояния от точки до фокуса и директрисы — оранжевого.

В математическом анализе принята другая запись уравнения параболы:

то есть ось параболы выбрана за ось координат. Можно заметить, что ax² — это квадратный трёхчлен ax² + bx + c , в котором b = 0 и c = 0 . График любого квадратного трёхчлена, то есть левой части квадратного уравнения, будет параболой.

Фокус параболы имеет координаты Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Директриса параболы определяется уравнением Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Расстояние r от любой точки Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xпараболы до фокуса определяется формулой Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Для каждой из точек параболы расстояние до фокуса равно расстоянию до директрисы.

Пример 1. Определить координаты фокуса параболы Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Решение. Число p расстояние от фокуса параболы до её директрисы. Начало координат в данном случае — в роли любой точки, расстояния от которой от фокуса до директрисы равны. Находим p:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Находим координаты фокуса параболы:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 2. Составить уравнение директрисы параболы Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Решение. Находим p:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Получаем уравнение директрисы параболы:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 3. Составить уравнение параболы, если расстояние от фокуса до директрисы равно 2.

Решение. Параметр p — это и есть данное расстояние от фокуса до директрисы. Подставляем и получаем:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Траектория камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет параболой (при отсутствии сопротивления воздуха). Зона достижимости для пущенных камней вновь будет параболой. В данном случае речь идёт об огибающей кривой траекторий камней, выпущенных из данной точки под разными углами, но с одной и той же начальной скоростью.

Парабола обладает следующим оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно её оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения (фигур, получающихся при вращении параболы вокруг оси). Пучок параллельных лучей, двигающийся вдоль оси параболы, отражаясь, собирается в её фокусе.

Содержание
  1. Задача 31453 Пожалуйста помогите 1)определить.
  2. Условие
  3. Решение
  4. Практическая работа по высшей математике на тему: «Парабола. Решение задач»
  5. Тема: «Кривые второго порядка. Парабола»
  6. Парабола, заданная квадратичной функцией
  7. Квадратичная функция при также является уравнением параболы и графически изображается той же параболой, что и но в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:
  8. Общее уравнение параболы
  9. В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:
  10. Краткое описание документа:
  11. 📸 Видео

Видео:213. Фокус и директриса параболы.Скачать

213. Фокус и директриса параболы.

Задача 31453 Пожалуйста помогите 1)определить.

Условие

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пожалуйста помогите
1)определить величину параметра расположение относительно координатных оси следующих парабол: y^2=6x x^2=5y

2)найти фокус и уравнение директрисы параболы y^2=24x

Решение

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Канонические уравнения параболы:
x^2=2py cимметрична относительно оси Оу, ветви направлены в сторону оси Оу
Фокус F(0;p/2)
Уравнение директрисы:
y=-p/2

x^2=-2py cимметрична относительно оси Оу, ветви направлены в сторону противоположную оси Оу
Фокус F(0;-p/2)
Уравнение директрисы:
y= p/2

y^2=2px cимметрична относительно оси Ох, ветви направлены в сторону оси Ох
Фокус F(p/2;0)
Уравнение директрисы:
x=-p/2

y^2=-2px cимметрична относительно оси Ох, ветви направлены в сторону противоположную оси Ох
Фокус F(-p/2;0)
Уравнение директрисы:
x=p/2

[b]Решение[/b]:
1) y^2=6x ⇒ 2p=6;
p=3
cимметрична относительно оси Ох, ветви направлены в сторону оси Ох

x^2=5y 2p=5 ⇒ 2p=5;
p=2,5
cимметрична относительно оси Оу, ветви направлены в сторону оси Оу

2)
y^2=24x ⇒ 2p=24;
p=12
cимметрична относительно оси Ох, ветви направлены в сторону оси Ох

Фокус F(12;0)
Уравнение директрисы:
x=-12

см. рис.3 Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Видео:Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Практическая работа по высшей математике на тему: «Парабола. Решение задач»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Дисциплина – «Элементы высшей математики»

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Тема: «Кривые второго порядка. Парабола»

Цель: формирование умений составлять уравнения параболы, исследовать форму и расположение параболы;

формирование общих компетенций, включающими в себя способность:

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

Методические указания и теоретические сведения к практической работе

Парабола — геометрическое место точек , равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).

Наряду с эллипсом и гиперболой , парабола является коническим сечением . Она может быть определена как коническое сечение с единичным эксцентриситетом .

Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x(или Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, если поменять местами оси).

Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xот обоих.

Парабола, заданная квадратичной функцией

Квадратичная функция Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xпри Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xтакже является уравнением параболы и графически изображается той же параболой, что и Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xно в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xгде Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x— дискриминант квадратного трёхчлена.

Общее уравнение параболы

В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Если кривая второго порядка, заданная в таком виде, является параболой, то составленный из коэффициентов при старших членах дискриминант Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xравен нулю.

Пример 1. Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Решение. Из данного канонического уравнения параболы следует, что Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, т.е. Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x,откуда Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.Значит, точка Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x— фокус параболы, а Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x— уравнение ее директрисы.

Пример 2. Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Решение. Согласно условию, фокус параболы расположен на отрицательной полуоси Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, т.е. ее уравнение имеет вид: x 2 = — 2 py

Так как Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, то Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, откуда Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.Итак, уравнение параболы есть Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, а уравнение ее директрисы Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Пример 3. Составить уравнение параболы, имеющей вершину в начале координат, симметричной оси Ох и проходящей через точку Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Решение. Из условия заключаем, что уравнение параболы следует искать в виде Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Так как точка Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xпринадлежит параболе , то ее координаты удовлетворяют этому уравнению: 36= — 2р*(-3); 2р=12.

Итак, уравнение параболы имеет вид Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Пример 4. Парабола симметрична относительно оси Ox , проходит через точку

A (4, -1), а вершина ее лежит в начале координат. Составить ее уравнение.

Решение. Так как парабола проходит через точку A (4, -1) с положительной абсциссой, а ее осью служит ось Ox , то уравнение параболы следует искать в виде y 2 = 2 px . Подставляя в это уравнение координаты точки A , будем иметь

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

искомым уравнением будет

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Эскиз этой параболы показан на рисунке

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 5. Парабола y 2 = 2 px проходит через точку A (2, 4). Определить ее параметр p .

Решение. Подставляем в уравнение параболы вместо текущих координат координаты точки A (2, 4). Получаем

4 2 = 2 p *2; 16 = 4 p ; p = 4.

Пример 6. Привести к каноническому (простейшему) виду уравнение параболы

y = 2 x 2 + 4 x + 5 и найти координаты ее вершины.

Решение. Уравнение y = 2 x 2 + 4 x + 5 преобразуем, выделив в правой части полный квадрат:

пусть теперь x 1 = x + 1, y 1 = y — 3. Из сравнения с формулами

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

координаты нового начала: x 0 = -1; y 0 = 3. Уравнение параболы примет вид Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Эскиз параболы показан на рисунке.

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 7. Упростить уравнение параболы y = x 2 — 7 x + 12, найти координаты ее вершины и начертить эскиз кривой.

Решение. Выделим в правой части уравнения y = x 2 — 7x + 12 полный квадрат по способу, указанному выше в задаче , и получим

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Отсюда из сравнения с формулами

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

координаты нового начала, т. е. вершины параболы, будут Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. После переноса начала координат в точку Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xуравнение параболы примет наиболее простой вид Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xНайдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. Эскиз кривой представлен на рисунке.

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 8. Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи окружности Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи симметрична относительно оси Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x.

Решение. Найдем точки пересечения заданных линий, решив совместно их уравнения:

Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

В результате получим два решения Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. Точки пересечения Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. Так как парабола проходит через точку Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи симметрична относительно оси Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, то в этой точке будет находиться вершина параболы. Поэтому уравнение параболы имеет вид Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. Так как парабола проходит через точку Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, то координаты этой точки удовлетворяют уравнению параболы: Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Итак, уравнением параболы будет Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, уравнение директрисы Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xили Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, откуда Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Ответ. Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x; Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Пример 9. Мостовая арка имеет форму параболы. Определить параметр Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xэтой параболы, зная, что пролет арки равен Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, а высота Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Решение. В ыберем прямоугольную систему координат так, чтобы вершина параболы (мостовой арки) находилась в начале координат, а ось симметрии совпадала с отрицательным направлением оси Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. В таком случае каноническое уравнение параболы имеет вид Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, а концы хорды арки Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8xи Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x. Подставив координаты одного из концов хорды (например, Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x) в уравнение параболы и решив полученное уравнение относительно Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x, получим Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

Ответ. Найдите координаты фокуса и написать уравнение директрисы для параболы y 2 8x

а) Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением у 2 =16р .

б) Найти координаты фокуса и уравнение директрисы параболы, заданной уравнением

а) Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты (0; -7).

б) Составить каноническое уравнение параболы и уравнение ее директрисы, если известно, что вершина параболы лежит в начале координат, а фокус имеет координаты (0; 4).

а) Составить уравнение параболы, имеющей вершину в начале координат, симметричной относительно оси Ох и проходящей через точку А (-2; — 4) . Начертить эскиз данной кривой.

б) Составить уравнение параболы, имеющей вершину в начале координат, симметричной относительно оси Ох и проходящей через точку А (3; — 5) . Начертить эскиз данной кривой.

а) Парабола y 2 = 2 px проходит через точку A (4; 8). Определить ее параметр p .

б) Парабола y 2 = 2 px проходит через точку A (-4; -8). Определить ее параметр p .

а) Привести к каноническому (простейшему) виду уравнение параболы y = 2 x 2 + 8 x + 5 и найти координаты ее вершины. Начертить эскиз данной кривой.

б) Привести к каноническому (простейшему) виду уравнение параболы y = 4 x 2 + 16 x +10 и найти координаты ее вершины. Начертить эскиз данной кривой.

Задание 6. а) Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой 2х + 2у=0 и окружности х 2 2 – 4х=0 и симметрична относительно оси Оу.

б) Составить уравнение параболы и ее директрисы, если парабола проходит через точки пересечения прямой 3х + 3у=0 и окружности 2 + 2у 2 — 8х=0 и симметрична относительно оси Ох .

Задание 7. а) Арка здания имеет форму параболы. Определить параметр р этой параболы, зная, что пролет арки равен 12 м, а высота 4 м.

б) Арка дома имеет форму параболы. Определить параметр р этой параболы, зная, что пролет арки равен 14 м, а высота 6 м.

Отчет о практической работе

Тема практической работы

Цель практической работы

В ходе выполнения практической работы я научился (закрепил умения) вычислять…

Я получил (совершенствовал) практические навыки…

В ходе практической работы я получил новые знания. Узнал, что …

Мне было сложно выполнять…, потому, что…

Мне было несложно выполнять…, потому, что…

Краткое описание документа:

Практическая работа по высшей математике на тему: «Парабола. Решение задач». В работе представлены краткие теоретические сведения и методические указания для выполнения практической работы. Работа предназначена студентам 2 курса СПО. Может быть использована для аудиторной и внеаудиторной самостоятельной работы студентов 2 курса СПО.

📸 Видео

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Видеоурок "Парабола"Скачать

Видеоурок "Парабола"

Фокус и директриса параболы 2Скачать

Фокус и директриса параболы 2

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Фокус и директриса параболы 1Скачать

Фокус и директриса параболы 1

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

§24 Каноническое уравнение параболыСкачать

§24 Каноническое уравнение параболы

Квадратичная функция. Вершина параболы и нули функции. 8 класс.Скачать

Квадратичная функция. Вершина параболы и нули функции. 8 класс.

Построение параболы по ее директрисе и фокусуСкачать

Построение параболы по ее директрисе и фокусу

Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.Скачать

Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Фокус и директриса параболы 2Скачать

Фокус и директриса параболы 2

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать

Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.

Фокус и директриса параболы 2Скачать

Фокус и директриса параболы 2
Поделиться или сохранить к себе: