Найдите число решений уравнения в зависимости от параметра а

Найдите число решений уравнения в зависимости от параметра а

Покажем, как задачи с параметрами можно решать графически.

Найдём количество решений уравнения

в зависимости от $$ a$$.

Искомое количество решений совпадает с числом точек пересечения графиков функций

Найдите число решений уравнения в зависимости от параметра а

График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $$ y=_left(xright)$$ имеет такой вид, как показано на рис. 43 $$ fleft(0right)=sqrt$$.

Графиком функции $$ y=a$$ будет прямая, параллельная оси $$ Ox$$ (рис. 43). При этом она пересекает ось ординат в точке $$ (0,a)$$. Легко видеть, что при $$a 3$$ прямая $$ y=a$$ не имеет пересечений с графиком $$ y=_left(xright)$$, при $$ a=3$$ и $$ ain [0;sqrt)$$ есть две точки пересечения, а при $$ ain [sqrt;3)$$ – четыре общие точки и при $$ a=sqrt$$ – три общие точки. Остаётся лишь сформулировать ответ.

При $$ ain (-infty ;0)bigcup (3;+infty )$$ решений нет, при $$ ain [0;sqrt)bigcup left$$ – два решения, при $$ ain left<sqrtright>$$ – три решения, при $$ ain (sqrt;3)$$ – четыре решения.

Найдём количество решений уравнения в зависимости от $$ a$$:

Найдите число решений уравнения в зависимости от параметра а

Методом интервалов нетрудно построить график функции

Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой $$ fleft(xright)=a$$ (рис. 44).

Проанализировав график, несложно выписать ответ.

При $$ ain (8;+infty )$$ уравнение имеет 2 решения, при $$ a=8$$ уравнение имеет бесконечно много решений, при $$ ain (-infty ;8)$$ решений нет.

Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.

Найдём количество решений системы уравнений

в зависимости от $$ a$$.

Для решения необходимо построить график уравнения $$ left|xright|+left|yright|=4$$. Это можно сделать, последовательно выполнив построения таких графиков:

Найдите число решений уравнения в зависимости от параметра а

График второго уравнения – окружность с центром в точке $$ O(0;0)$$ и радиусом $$ left|aright|$$. Изобразим оба этих графика на координатной плоскости $$ xOy$$.

Найдите число решений уравнения в зависимости от параметра а

Найдите число решений уравнения в зависимости от параметра а

Как видим, при $$|a| 4$$ графики не пересекаются. При $$ left|aright|=2sqrt$$ или $$ left|aright|=4$$ есть 4 точки пересечения. При остальных $$ a$$ есть 8 точек пересечения. Таким образом, можно сформулировать ответ.

При $$ ain (-infty ;-4)cup (-2sqrt;2sqrt)cup (4;+infty )$$ система не имеет решений;

при $$ ain <-4;-2sqrt;2sqrt;4>$$ система имеет 4 решения;

при $$ ain (-4;-2sqrt)cup (2sqrt;4)$$ система имеет 8 решений.

В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция $$ y=fleft(xright)$$ имеет локальный максимум в точке $$ _$$, если для некоторого числа $$ε > 0$$ при $$|x − x_0| 0$$ при $$|x − x_0| 0$$ график $$ y=at-3$$ касается линии $$ y=sqrt$$ (cм. рис. 46). Уравнение $$ D=0$$ имеет единственный положительный корень `a=1/4`. Следовательно, `a_2=1/4`. Если $$dfrac3leq a 1/4` они не имеют общих точек.

Рассмотрим пример использования этого правила в задаче.

Найдём все значения параметра $$ a$$, при которых система

имеет хотя бы одно решение.

Неравенство системы после выделения полных квадратов можно записать в виде $$ ^-8left|xright|+16+^-8left|yright|+16le 1$$ или $$ left(right|x|-4^+(left|yright|-4^le 1$$. Множество $$ E$$ решений этого неравенства – объединение кругов $$ _$$, $$ _$$, $$ _$$, $$ _$$ (вместе с их границами) радиуса $$ 1$$ (см. рис. 47) с центрами $$ _(4;4)$$, $$ _(4;-4)$$, $$ _(-4;-4)$$, $$ _(-4;4)$$. Запишем уравнение системы в виде

Найдите число решений уравнения в зависимости от параметра а

Это уравнение задаёт окружность $$ L$$ радиуса $$ left|aright|$$ с центром в точке $$ M(0;1)$$, или точку $$ (0;1)$$ при $$ a=0$$. Исходная система имеет хотя бы одно решение при тех значениях $$ a$$, при которых окружность $$ L$$ имеет общие точки с множеством $$ E$$. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях $$ a$$ окружность $$ L$$ имеет общие точки с кругами, центрами которых являются точки $$ _$$ и $$ _$$. Проведём из точки $$ M$$ лучи $$ _$$ и $$ _$$ в направлении точек $$ _$$ и $$ _$$. Пусть $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$, $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$. Тогда из геометрических соображений имеем:

При $$ 4le left|aright|le 6$$ окружность с центром $$ M$$ имеет общие точки с кругом $$ _$$ , а при $$ sqrt-1le left|aright|le sqrt+1$$ – с кругом $$ _$$.

а) Если $$b 0$$. Эта система не имеет решений при $$ a=0$$ и поэтому $$b 0$$. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $$0 1$$. Если $$b > 1$$, то $$sqrt Эта система не имеет решений, так как прямая $$ y=x-b$$ не пересекает график функции $$ y=|^-b|$$ (см. рис. 48). Если $$0 0$$).

Найдите число решений уравнения в зависимости от параметра а

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.

Найдём все значения `a`, при каждом из которых уравнение

Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.

Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.

Найдите число решений уравнения в зависимости от параметра а

При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a

Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;

– три корня при `4/5

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости. В следующем примере будем использовать известный подход к задачам, содержащим некоторые переменные в квадрате. Суть этого подхода — рассмотрение выражения как квадратичной функции относительно какой-нибудь переменной (остальные переменные при этом считаются параметрами) с последующим использованием известных свойств квадратичной функции.

Найдём все значения параметра $$ a$$, при каждом из которых система уравнений

имеет ровно три решения.

Первое уравнение данной системы равносильно совокупности двух уравнений $$ |y+9|+|x+2|=2$$ и $$ ^+^=3$$. Первое из них задаёт квадрат $$ G$$ с центром $$ (-2;-9)$$, диагонали которого равны $$ 4$$ и параллельны осям координат. Второе задаёт окружность $$ S$$ с центром $$ (0;0)$$ радиуса $$ sqrt$$ (см. рис. 52).

Найдите число решений уравнения в зависимости от параметра а

Второе уравнение исходной системы при $$a > 0$$ задаёт окружность $$ Omega $$ с центром $$ (-2;-4)$$ радиуса $$ R=sqrt$$.

Отметим, что при $$a Рассмотрев случаи внешнего и внутреннего касания окружностей $$ Omega $$ и $$ S$$, можно заключить, что они имеют ровно `1` общую точку при $$ R=sqrtpm sqrt$$, ровно `2` общие точки при $$ Rin (sqrt-sqrt;sqrt+sqrt)$$ и ни одной общей точки при остальных $$ R$$. Поскольку центры окружности $$ Omega $$ и квадрата $$ G$$ лежат на прямой $$ x=-2$$, то $$ Omega $$ и $$ G$$ имеют ровно `1` общую точку при $$ R=3$$ или $$ R=7$$, ровно `2` общие точки при $$ Rin (3;7)$$ и ни одной общей точки при остальных значениях $$ R$$. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность $$ Omega $$ имела `2` общие точки с квадратом $$ G$$ и `1` общую точку с окружностью $$ S$$ или наоборот. Рассмотрим значения $$ R$$, при которых окружность $$ Omega $$ имеет с квадратом $$ G$$ или окружностью $$ S$$ ровно `1` общую точку.

1) $$ R=sqrt+sqrt$$. Тогда есть ровно `1` общая точка с окружностью $$ S$$, и ровно `2` общие точки с квадратом $$ G$$ (т. к. $$3 sqrt + sqrt$$), т. е. у системы 1 решение.

Итак, подходят $$ R=3$$ и $$ R=sqrt+sqrt$$. Тогда искомые значения параметра $$ a=^=9$$ и $$ a=(sqrt+sqrt^=23+4sqrt$$.

Видео:Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Вторая часть.

В первой части мы рассматривали системы линейных алгебраических уравнений (СЛАУ), все коэффициенты которых были известны. В этой же части разберём СЛАУ, среди коэффициентов которых есть некий параметр. Для исследования СЛАУ на совместность станем использовать теорему Кронекера-Капелли. В процессе решения примеров на данной странице будем применять метод Гаусса или же метод Крамера. Сформулируем теорему и следствие из неё ещё раз:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde$.

Следствие из теоремы Кронекера-Капелли

Параметр $n$, использованный выше, равен количеству переменных рассматриваемой СЛАУ.

Исследовать СЛАУ $ left <begin& kx_1+2x_2+x_3=8;\ & -x_1+x_2+2x_3=7;\ & x_2+kx_3=5.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Сделать это можно несколькими путями. Стоит учесть, что в данном примере нам требуется не только исследовать систему на совместность, но и указать её решения. Мне кажется наиболее удобным в таких задачах применять метод Гаусса, однако это вовсе не является обязательным. Для разнообразия данный пример решим методом Гаусса, а следующий – методом Крамера. Итак, запишем и начнём преобразовывать расширенную матрицу системы. При записи расширенной матрицы системы поменяем местами первую и вторую строки. Это нужно для того, чтобы первым элементом первой строки стало число -1.

$$ left(begin -1 & 1 &2 &7 \ k & 2 & 1 & 8\ 0 & 1 & k & 5 end right) begin phantom \ r_2+kcdot\ phantomendrightarrow left(begin -1 & 1 &2 &7 \ 0 & 2+k & 1+2k & 8+7k\ 0 & 1 & k & 5 end right)rightarrowleft|begin&text\&textendright|rightarrow \ rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 2+k & 1+2k & 8+7k end right) begin phantom\phantom\r_3-(2+k)cdotend rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. Напомню, что до черты расположена преобразованная матрица матрица системы: $left(begin-1 & 1 &2\0 & 1 & k\ 0 & 0 & 1-k^2end right)$.

Каким бы ни было значение параметра $k$, полученная нами после преобразований матрица будет содержать не менее двух ненулевых строк (первая и вторая строки точно останутся ненулевыми). Вопрос о количестве решений зависит лишь от третьей строки.

В следствии из теоремы Кронекера-Капелли указаны три случая, и в данном примере легко рассмотреть каждый из них. Начнём с варианта $rang Aneqrangwidetilde$, при котором система не имеет решений, т.е. несовместна.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

$rang Aneqrangwidetilde$

Ранги будут не равны друг другу лишь в одном случае: когда $1-k^2=0$, при этом $2k-2neq$. В этом случае преобразованная матрица системы будет содержать две ненулевых строки (т.е. $rang A=2$), а преобразованная расширенная матрица системы будет содержать три ненулевых строки (т.е. $rang widetilde=3$). Иными словами, нам требуется решить систему уравнений:

Из первого уравнения имеем: $k=1$ или $k=-1$, однако $kneq$, поэтому остаётся лишь один случай: $k=-1$. Следовательно, при $k=-1$ система не имеет решений.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

$rang A=rangwidetilde<3$

Рассмотрим второй пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой, но меньше, чем количество переменных (т.е. меньше 3). Это возможно лишь в том случае, если последняя строка преобразованной расширенной матрицы системы полностью станет нулевой, т.е.

Из данной системы имеем: $k=1$. Именно при $k=1$ третья строка преобразованной расширенной матрицы системы станет нулевой, поэтому $rang=rangwidetilde=2$. При этом, повторюсь, у нас всего три переменных, т.е. имеем случай $rang A=rangwidetilde=2<3$.

Система имеет бесконечное количество решений. Найдём эти решения. Подставим $k=1$ в преобразованную матрицу и продолжим операции метода Гаусса. Третью строку (она станет нулевой) просто вычеркнем:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right)rightarrow|k=1|rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & 1 & 5 end right) rightarrowleft|begin&text\&textendright|rightarrow \ rightarrowleft(begin-1 & 1 &-2 &7\0 & 1 & -1 & 5endright) begin r_1-r_2\phantomend rightarrowleft(begin-1 & 0 &-1 &2\0 & 1 & -1 & 5endright) begin -1cdot\phantomend rightarrowleft(begin1 & 0 &1 &-2\0 & 1 & -1 & 5endright) $$

Видео:Найти ранг матрицы при всех значениях параметраСкачать

Найти ранг матрицы при всех значениях параметра

$rang A=rangwidetilde=3$

Рассмотрим третий пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой и равны количеству переменных. Это возможно лишь в том случае, если $1-k^2neq$, т.е. $kneq$ и $kneq$. Продолжаем решение методом Гаусса:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 endright)rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & (1-k)(1+k) & -2(1-k) endright) begin phantom\phantom\r_3:((1-k)(1+k))end rightarrow\ rightarrowleft(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-2r_3\r_2-kcdot\phantomend rightarrow left(begin -1 & 1 &0 &(7k+11)/(k+1) \0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-r_2\phantom\phantomendrightarrow\ rightarrow left(begin -1 & 0 &0 &6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin -1cdot\phantom\phantomendrightarrow left(begin 1 & 0 &0 &-6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) $$

Исследовать СЛАУ $left <begin& 2kx_1+x_2+x_3=0;\ & x_1-x_2+kx_3=1;\ & (k-6)x_1+2x_2-4x_3=-3.endright.$ на совместность и найти решение системы при тех значениях параметра, при которых она совместна.

Вновь, как и в предыдущем примере, для того, чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Чтобы исследовать систему на совместность и указать количество решений применим метод Крамера. Можно было бы решить и методом Гаусса, однако в предыдущем примере мы его уже использовали, поэтому для разнообразия решим задачу с помощью метода Крамера. Начнём с вычисления определителя матрицы системы. Этот определитель мы получим с помощью готовой формулы.

Значения переменных $x_1$, $x_2$, $x_3$ будут такими:

Нам остаётся исследовать совместность системы при условии $Delta=0$. Это равенство возможно при $k=0$ или $k=1$.

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Случай $k=0$

Нам остаётся рассмотреть последний случай: $k=1$.

Видео:Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля

Случай $k=1$

Для наглядности я запишу здесь матрицу системы $A$ и расширенную матрицу системы $widetilde$, подставив $k=1$:

Если $k=1$, то $Delta=0$. Это значит, что $rang≤2$. Рассмотрим миноры второго порядка матрицы $A$. Например, возьмём минор, образованный на пересечении строк №1, №2 и столбцов №1, №2: $M=left|begin2 & 1\ 1 & -1endright|=-3$. Так как $Mneq$, то ранг матрицы $A$ равен 2.

Задача решена, осталось лишь записать ответ.

Разберём ещё один пример, в котором рассмотрим СЛАУ с четырьмя уравнениями.

Исследовать СЛАУ $ left <begin& kx_1+x_2+x_3+x_4=1;\ & x_1+kx_2+x_3+x_4=1;\ & x_1+x_2+kx_3+x_4=1;\ & x_1+x_2+x_3+kx_4=1.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Применим метод Гаусса. При записи расширенной матрицы системы поместим первую строку вниз, на место четвёртой строки. А дальше начнём стандартные операции метода Гаусса.

$$ left(begin 1 & k &1 &1&1 \ 1 & 1 &k &1&1 \ 1 & 1 &1 &k&1 \ k & 1 &1 &1&1 end right) begin phantom\r_2-r_1\r_3-r_1\r_4-kcdotendrightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) $$

Здесь можно было бы остановиться и рассмотреть случаи $k=1$ и $kneq$ отдельно. Цель таких действий: разделить вторую, третью и четвёртую строки на $k-1$ при условии $k-1neq$. Однако пока что полученная нами матрица содержит не столь уж громоздкие элементы, поэтому сейчас отвлекаться на частности я не вижу смысла. Продолжим преобразования в общем виде:

$$ left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) begin phantom\phantom\r_3-r_2\r_4-(k+1)r_2endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &(1-k)(k+2) &1-k&1-kend right) begin phantom\phantom\phantom\r_4-(k+2)r_3endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &0&(1-k)(k+3)&1-kend right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. До черты расположена преобразованная матрица системы. Ранги матриц $A$ и $widetilde$ зависят от значения параметра $k$. Рассмотрим три случая: $k=1$, $k=-3$ и случай $kneq$, $kneq$.

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Случай $k=-3$

Видео:Решение задачи на нахождение количества решений в зависимости от значений параметра | МатематикаСкачать

Решение задачи на нахождение количества решений в зависимости от значений параметра | Математика

Случай $k=1$

Если $k=1$, то преобразованная матрица станет такой: $left(begin 1 & 1 &1 &1&1\ 0 & 0 &0 &0&0\ 0 & 0 &0&0&0\ 0 & 0 &0&0&0endright)$. Ранги матрицы системы и расширенной матрицы системы равны между собой (и равны 1), но меньше, чем количество переменных, т.е. $rang=rang=1<4$. Вывод: система является неопределённой. Общее решение системы непосредственно получим из первой строки записанной матрицы:

$$x_1+x_2+x_3+x_4=1; Rightarrow ; x_1=-x_2-x_3-x_4+1.$$

Видео:Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)Скачать

Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)

Случай $kneq$ и $neq$

Продолжим решение методом Гаусса. Так как $kneq$ и $neq$, то $(1-k)(k+3)neq$. Следовательно, мы можем разделить вторую и третью строки на $1-k$, четвёртую строку – на выражение $(1-k)(k+3)$. С полученной после этого матрицей продолжим операции обратного хода метода Гаусса:

$$ left(begin 1 & k &1 &1&1\ 0 & 1 &-1 &0&0\ 0 & 0 &1&-1&0\ 0 & 0 &0&1&fracend right) begin r_1-r_4\phantom\phantom\r_3+r_4endrightarrow left(begin 1 & k &1 &0&frac\ 0 & 1 &-1 &0&0\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-r_3\r_2+r_3\phantom\phantomendrightarrow\ rightarrowleft(begin 1 & k &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-kcdot\phantom\phantom\phantomendrightarrow left(begin 1 & 0 &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) $$

Из последней матрицы имеем: $x_1=x_2=x_3=x_4=frac$.

  • При $k=-3$ система несовместна.
  • При $k=1$ система является неопределённой. Общее решение системы: $left<begin& x_1=-x_2-x_3-x_4+1;\&x_2in,;x_3in,;x_4in. endright.$
  • При $kneq$ и $kneq$ система является определённой. Решение системы: $x_1=x_2=x_3=x_4=frac$.

Видео:Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Решение уравнений с параметром по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют задачи, в которых необходимо произвести поиск решений линейных и квадратных уравнений в общем виде или произвести поиск количества корней, которое имеет уравнение в зависимости от значения параметра. Все эти задачи с параметрами.

Найдите число решений уравнения в зависимости от параметра а

Рассмотрим следующие уравнения в качестве наглядного примера:

[у = kx,] где [x, y] — переменные, [k ]- параметр;

[у = kx + b,] где [x, y] — переменные, [k, b] — параметр;

[аx^2 + bх + с = 0,] где [x] — переменная, [а, b, с] — параметр.

Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.

Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно [x] при значениях параметра, определенных в первом пункте.

3. Решить исходное уравнение относительно [x] при значениях параметра, отличающихся от выбранных в первом пункте.

Допустим, дано такое уравнение:

[mid 6 — x mid = a.]

Проанализировав исходные данные, видно, что a [ge 0.]

По правилу модуля [6 — x = pm a, ] выразим [x:]

Ответ: [x = 6 pm a,] где [a ge 0.]

Видео:Найти все p, при которых уравнение имеет целые корни. Задача с параметромСкачать

Найти все p, при которых уравнение имеет целые корни. Задача с параметром

Где можно решить уравнение с параметром онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

🎬 Видео

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Простите, где все?! — РАЗНЫЕ ТЕЛЕГИСкачать

Простите, где все?! — РАЗНЫЕ ТЕЛЕГИ

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

ИГРА В СЛУЧАЙНОСТЬ | Парадоксы, рулетка и квантовая физика [LIM №4]Скачать

ИГРА В СЛУЧАЙНОСТЬ | Парадоксы, рулетка и квантовая физика [LIM №4]

Профильный ЕГЭ 2023. Задача 17. Параметры. Методы решенияСкачать

Профильный ЕГЭ 2023. Задача 17. Параметры. Методы решения

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений
Поделиться или сохранить к себе: