Найдите число решений уравнения в зависимости от параметра а

Найдите число решений уравнения в зависимости от параметра а

Покажем, как задачи с параметрами можно решать графически.

Найдём количество решений уравнения

в зависимости от $$ a$$.

Искомое количество решений совпадает с числом точек пересечения графиков функций

Найдите число решений уравнения в зависимости от параметра а

График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $$ y=_left(xright)$$ имеет такой вид, как показано на рис. 43 $$ fleft(0right)=sqrt$$.

Графиком функции $$ y=a$$ будет прямая, параллельная оси $$ Ox$$ (рис. 43). При этом она пересекает ось ординат в точке $$ (0,a)$$. Легко видеть, что при $$a 3$$ прямая $$ y=a$$ не имеет пересечений с графиком $$ y=_left(xright)$$, при $$ a=3$$ и $$ ain [0;sqrt)$$ есть две точки пересечения, а при $$ ain [sqrt;3)$$ – четыре общие точки и при $$ a=sqrt$$ – три общие точки. Остаётся лишь сформулировать ответ.

При $$ ain (-infty ;0)bigcup (3;+infty )$$ решений нет, при $$ ain [0;sqrt)bigcup left$$ – два решения, при $$ ain left<sqrtright>$$ – три решения, при $$ ain (sqrt;3)$$ – четыре решения.

Найдём количество решений уравнения в зависимости от $$ a$$:

Найдите число решений уравнения в зависимости от параметра а

Методом интервалов нетрудно построить график функции

Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой $$ fleft(xright)=a$$ (рис. 44).

Проанализировав график, несложно выписать ответ.

При $$ ain (8;+infty )$$ уравнение имеет 2 решения, при $$ a=8$$ уравнение имеет бесконечно много решений, при $$ ain (-infty ;8)$$ решений нет.

Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.

Найдём количество решений системы уравнений

в зависимости от $$ a$$.

Для решения необходимо построить график уравнения $$ left|xright|+left|yright|=4$$. Это можно сделать, последовательно выполнив построения таких графиков:

Найдите число решений уравнения в зависимости от параметра а

График второго уравнения – окружность с центром в точке $$ O(0;0)$$ и радиусом $$ left|aright|$$. Изобразим оба этих графика на координатной плоскости $$ xOy$$.

Найдите число решений уравнения в зависимости от параметра а

Найдите число решений уравнения в зависимости от параметра а

Как видим, при $$|a| 4$$ графики не пересекаются. При $$ left|aright|=2sqrt$$ или $$ left|aright|=4$$ есть 4 точки пересечения. При остальных $$ a$$ есть 8 точек пересечения. Таким образом, можно сформулировать ответ.

При $$ ain (-infty ;-4)cup (-2sqrt;2sqrt)cup (4;+infty )$$ система не имеет решений;

при $$ ain <-4;-2sqrt;2sqrt;4>$$ система имеет 4 решения;

при $$ ain (-4;-2sqrt)cup (2sqrt;4)$$ система имеет 8 решений.

В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция $$ y=fleft(xright)$$ имеет локальный максимум в точке $$ _$$, если для некоторого числа $$ε > 0$$ при $$|x − x_0| 0$$ при $$|x − x_0| 0$$ график $$ y=at-3$$ касается линии $$ y=sqrt$$ (cм. рис. 46). Уравнение $$ D=0$$ имеет единственный положительный корень `a=1/4`. Следовательно, `a_2=1/4`. Если $$dfrac3leq a 1/4` они не имеют общих точек.

Рассмотрим пример использования этого правила в задаче.

Найдём все значения параметра $$ a$$, при которых система

имеет хотя бы одно решение.

Неравенство системы после выделения полных квадратов можно записать в виде $$ ^-8left|xright|+16+^-8left|yright|+16le 1$$ или $$ left(right|x|-4^+(left|yright|-4^le 1$$. Множество $$ E$$ решений этого неравенства – объединение кругов $$ _$$, $$ _$$, $$ _$$, $$ _$$ (вместе с их границами) радиуса $$ 1$$ (см. рис. 47) с центрами $$ _(4;4)$$, $$ _(4;-4)$$, $$ _(-4;-4)$$, $$ _(-4;4)$$. Запишем уравнение системы в виде

Найдите число решений уравнения в зависимости от параметра а

Это уравнение задаёт окружность $$ L$$ радиуса $$ left|aright|$$ с центром в точке $$ M(0;1)$$, или точку $$ (0;1)$$ при $$ a=0$$. Исходная система имеет хотя бы одно решение при тех значениях $$ a$$, при которых окружность $$ L$$ имеет общие точки с множеством $$ E$$. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях $$ a$$ окружность $$ L$$ имеет общие точки с кругами, центрами которых являются точки $$ _$$ и $$ _$$. Проведём из точки $$ M$$ лучи $$ _$$ и $$ _$$ в направлении точек $$ _$$ и $$ _$$. Пусть $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$, $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$. Тогда из геометрических соображений имеем:

При $$ 4le left|aright|le 6$$ окружность с центром $$ M$$ имеет общие точки с кругом $$ _$$ , а при $$ sqrt-1le left|aright|le sqrt+1$$ – с кругом $$ _$$.

а) Если $$b 0$$. Эта система не имеет решений при $$ a=0$$ и поэтому $$b 0$$. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $$0 1$$. Если $$b > 1$$, то $$sqrt Эта система не имеет решений, так как прямая $$ y=x-b$$ не пересекает график функции $$ y=|^-b|$$ (см. рис. 48). Если $$0 0$$).

Найдите число решений уравнения в зависимости от параметра а

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.

Найдём все значения `a`, при каждом из которых уравнение

Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.

Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.

Найдите число решений уравнения в зависимости от параметра а

При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a

Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;

– три корня при `4/5

В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости. В следующем примере будем использовать известный подход к задачам, содержащим некоторые переменные в квадрате. Суть этого подхода — рассмотрение выражения как квадратичной функции относительно какой-нибудь переменной (остальные переменные при этом считаются параметрами) с последующим использованием известных свойств квадратичной функции.

Найдём все значения параметра $$ a$$, при каждом из которых система уравнений

имеет ровно три решения.

Первое уравнение данной системы равносильно совокупности двух уравнений $$ |y+9|+|x+2|=2$$ и $$ ^+^=3$$. Первое из них задаёт квадрат $$ G$$ с центром $$ (-2;-9)$$, диагонали которого равны $$ 4$$ и параллельны осям координат. Второе задаёт окружность $$ S$$ с центром $$ (0;0)$$ радиуса $$ sqrt$$ (см. рис. 52).

Найдите число решений уравнения в зависимости от параметра а

Второе уравнение исходной системы при $$a > 0$$ задаёт окружность $$ Omega $$ с центром $$ (-2;-4)$$ радиуса $$ R=sqrt$$.

Отметим, что при $$a Рассмотрев случаи внешнего и внутреннего касания окружностей $$ Omega $$ и $$ S$$, можно заключить, что они имеют ровно `1` общую точку при $$ R=sqrtpm sqrt$$, ровно `2` общие точки при $$ Rin (sqrt-sqrt;sqrt+sqrt)$$ и ни одной общей точки при остальных $$ R$$. Поскольку центры окружности $$ Omega $$ и квадрата $$ G$$ лежат на прямой $$ x=-2$$, то $$ Omega $$ и $$ G$$ имеют ровно `1` общую точку при $$ R=3$$ или $$ R=7$$, ровно `2` общие точки при $$ Rin (3;7)$$ и ни одной общей точки при остальных значениях $$ R$$. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность $$ Omega $$ имела `2` общие точки с квадратом $$ G$$ и `1` общую точку с окружностью $$ S$$ или наоборот. Рассмотрим значения $$ R$$, при которых окружность $$ Omega $$ имеет с квадратом $$ G$$ или окружностью $$ S$$ ровно `1` общую точку.

1) $$ R=sqrt+sqrt$$. Тогда есть ровно `1` общая точка с окружностью $$ S$$, и ровно `2` общие точки с квадратом $$ G$$ (т. к. $$3 sqrt + sqrt$$), т. е. у системы 1 решение.

Итак, подходят $$ R=3$$ и $$ R=sqrt+sqrt$$. Тогда искомые значения параметра $$ a=^=9$$ и $$ a=(sqrt+sqrt^=23+4sqrt$$.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Вторая часть.

В первой части мы рассматривали системы линейных алгебраических уравнений (СЛАУ), все коэффициенты которых были известны. В этой же части разберём СЛАУ, среди коэффициентов которых есть некий параметр. Для исследования СЛАУ на совместность станем использовать теорему Кронекера-Капелли. В процессе решения примеров на данной странице будем применять метод Гаусса или же метод Крамера. Сформулируем теорему и следствие из неё ещё раз:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde$.

Следствие из теоремы Кронекера-Капелли

Параметр $n$, использованный выше, равен количеству переменных рассматриваемой СЛАУ.

Исследовать СЛАУ $ left <begin& kx_1+2x_2+x_3=8;\ & -x_1+x_2+2x_3=7;\ & x_2+kx_3=5.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Сделать это можно несколькими путями. Стоит учесть, что в данном примере нам требуется не только исследовать систему на совместность, но и указать её решения. Мне кажется наиболее удобным в таких задачах применять метод Гаусса, однако это вовсе не является обязательным. Для разнообразия данный пример решим методом Гаусса, а следующий – методом Крамера. Итак, запишем и начнём преобразовывать расширенную матрицу системы. При записи расширенной матрицы системы поменяем местами первую и вторую строки. Это нужно для того, чтобы первым элементом первой строки стало число -1.

$$ left(begin -1 & 1 &2 &7 \ k & 2 & 1 & 8\ 0 & 1 & k & 5 end right) begin phantom \ r_2+kcdot\ phantomendrightarrow left(begin -1 & 1 &2 &7 \ 0 & 2+k & 1+2k & 8+7k\ 0 & 1 & k & 5 end right)rightarrowleft|begin&text\&textendright|rightarrow \ rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 2+k & 1+2k & 8+7k end right) begin phantom\phantom\r_3-(2+k)cdotend rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. Напомню, что до черты расположена преобразованная матрица матрица системы: $left(begin-1 & 1 &2\0 & 1 & k\ 0 & 0 & 1-k^2end right)$.

Каким бы ни было значение параметра $k$, полученная нами после преобразований матрица будет содержать не менее двух ненулевых строк (первая и вторая строки точно останутся ненулевыми). Вопрос о количестве решений зависит лишь от третьей строки.

В следствии из теоремы Кронекера-Капелли указаны три случая, и в данном примере легко рассмотреть каждый из них. Начнём с варианта $rang Aneqrangwidetilde$, при котором система не имеет решений, т.е. несовместна.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

$rang Aneqrangwidetilde$

Ранги будут не равны друг другу лишь в одном случае: когда $1-k^2=0$, при этом $2k-2neq$. В этом случае преобразованная матрица системы будет содержать две ненулевых строки (т.е. $rang A=2$), а преобразованная расширенная матрица системы будет содержать три ненулевых строки (т.е. $rang widetilde=3$). Иными словами, нам требуется решить систему уравнений:

Из первого уравнения имеем: $k=1$ или $k=-1$, однако $kneq$, поэтому остаётся лишь один случай: $k=-1$. Следовательно, при $k=-1$ система не имеет решений.

Видео:Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

$rang A=rangwidetilde<3$

Рассмотрим второй пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой, но меньше, чем количество переменных (т.е. меньше 3). Это возможно лишь в том случае, если последняя строка преобразованной расширенной матрицы системы полностью станет нулевой, т.е.

Из данной системы имеем: $k=1$. Именно при $k=1$ третья строка преобразованной расширенной матрицы системы станет нулевой, поэтому $rang=rangwidetilde=2$. При этом, повторюсь, у нас всего три переменных, т.е. имеем случай $rang A=rangwidetilde=2<3$.

Система имеет бесконечное количество решений. Найдём эти решения. Подставим $k=1$ в преобразованную матрицу и продолжим операции метода Гаусса. Третью строку (она станет нулевой) просто вычеркнем:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 end right)rightarrow|k=1|rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & 1 & 5 end right) rightarrowleft|begin&text\&textendright|rightarrow \ rightarrowleft(begin-1 & 1 &-2 &7\0 & 1 & -1 & 5endright) begin r_1-r_2\phantomend rightarrowleft(begin-1 & 0 &-1 &2\0 & 1 & -1 & 5endright) begin -1cdot\phantomend rightarrowleft(begin1 & 0 &1 &-2\0 & 1 & -1 & 5endright) $$

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

$rang A=rangwidetilde=3$

Рассмотрим третий пункт следствия из теоремы Кронекера-Капелли – ранги равны между собой и равны количеству переменных. Это возможно лишь в том случае, если $1-k^2neq$, т.е. $kneq$ и $kneq$. Продолжаем решение методом Гаусса:

$$ left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1-k^2 & 2k-2 endright)rightarrow left(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & (1-k)(1+k) & -2(1-k) endright) begin phantom\phantom\r_3:((1-k)(1+k))end rightarrow\ rightarrowleft(begin -1 & 1 &2 &7 \0 & 1 & k & 5 \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-2r_3\r_2-kcdot\phantomend rightarrow left(begin -1 & 1 &0 &(7k+11)/(k+1) \0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin r_1-r_2\phantom\phantomendrightarrow\ rightarrow left(begin -1 & 0 &0 &6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) begin -1cdot\phantom\phantomendrightarrow left(begin 1 & 0 &0 &-6/(k+1)\0 & 1 & 0 & (7k+5)/(k+1) \ 0 & 0 & 1 & -2/(1+k) endright) $$

Исследовать СЛАУ $left <begin& 2kx_1+x_2+x_3=0;\ & x_1-x_2+kx_3=1;\ & (k-6)x_1+2x_2-4x_3=-3.endright.$ на совместность и найти решение системы при тех значениях параметра, при которых она совместна.

Вновь, как и в предыдущем примере, для того, чтобы исследовать заданную систему на совместность, нам нужно найти ранг матрицы системы $A$ и ранг расширенной матрицы системы $widetilde$. Чтобы исследовать систему на совместность и указать количество решений применим метод Крамера. Можно было бы решить и методом Гаусса, однако в предыдущем примере мы его уже использовали, поэтому для разнообразия решим задачу с помощью метода Крамера. Начнём с вычисления определителя матрицы системы. Этот определитель мы получим с помощью готовой формулы.

Значения переменных $x_1$, $x_2$, $x_3$ будут такими:

Нам остаётся исследовать совместность системы при условии $Delta=0$. Это равенство возможно при $k=0$ или $k=1$.

Видео:Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля

Случай $k=0$

Нам остаётся рассмотреть последний случай: $k=1$.

Видео:Найти ранг матрицы при всех значениях параметраСкачать

Найти ранг матрицы при всех значениях параметра

Случай $k=1$

Для наглядности я запишу здесь матрицу системы $A$ и расширенную матрицу системы $widetilde$, подставив $k=1$:

Если $k=1$, то $Delta=0$. Это значит, что $rang≤2$. Рассмотрим миноры второго порядка матрицы $A$. Например, возьмём минор, образованный на пересечении строк №1, №2 и столбцов №1, №2: $M=left|begin2 & 1\ 1 & -1endright|=-3$. Так как $Mneq$, то ранг матрицы $A$ равен 2.

Задача решена, осталось лишь записать ответ.

Разберём ещё один пример, в котором рассмотрим СЛАУ с четырьмя уравнениями.

Исследовать СЛАУ $ left <begin& kx_1+x_2+x_3+x_4=1;\ & x_1+kx_2+x_3+x_4=1;\ & x_1+x_2+kx_3+x_4=1;\ & x_1+x_2+x_3+kx_4=1.endright.$ на совместность и найти решение системы в зависимости от значений параметра $k$.

Применим метод Гаусса. При записи расширенной матрицы системы поместим первую строку вниз, на место четвёртой строки. А дальше начнём стандартные операции метода Гаусса.

$$ left(begin 1 & k &1 &1&1 \ 1 & 1 &k &1&1 \ 1 & 1 &1 &k&1 \ k & 1 &1 &1&1 end right) begin phantom\r_2-r_1\r_3-r_1\r_4-kcdotendrightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) $$

Здесь можно было бы остановиться и рассмотреть случаи $k=1$ и $kneq$ отдельно. Цель таких действий: разделить вторую, третью и четвёртую строки на $k-1$ при условии $k-1neq$. Однако пока что полученная нами матрица содержит не столь уж громоздкие элементы, поэтому сейчас отвлекаться на частности я не вижу смысла. Продолжим преобразования в общем виде:

$$ left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 1-k &0&k-1&0\ 0 & 1-k^2 &1-k &1-k&1-kend right) begin phantom\phantom\r_3-r_2\r_4-(k+1)r_2endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &(1-k)(k+2) &1-k&1-kend right) begin phantom\phantom\phantom\r_4-(k+2)r_3endrightarrow \ rightarrow left(begin 1 & k &1 &1&1\ 0 & 1-k &k-1 &0&0\ 0 & 0 &1-k&k-1&0\ 0 & 0 &0&(1-k)(k+3)&1-kend right) $$

Мы привели расширенную матрицу системы к ступенчатому виду. До черты расположена преобразованная матрица системы. Ранги матриц $A$ и $widetilde$ зависят от значения параметра $k$. Рассмотрим три случая: $k=1$, $k=-3$ и случай $kneq$, $kneq$.

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Случай $k=-3$

Видео:Решение задачи на нахождение количества решений в зависимости от значений параметра | МатематикаСкачать

Решение задачи на нахождение количества решений в зависимости от значений параметра | Математика

Случай $k=1$

Если $k=1$, то преобразованная матрица станет такой: $left(begin 1 & 1 &1 &1&1\ 0 & 0 &0 &0&0\ 0 & 0 &0&0&0\ 0 & 0 &0&0&0endright)$. Ранги матрицы системы и расширенной матрицы системы равны между собой (и равны 1), но меньше, чем количество переменных, т.е. $rang=rang=1<4$. Вывод: система является неопределённой. Общее решение системы непосредственно получим из первой строки записанной матрицы:

$$x_1+x_2+x_3+x_4=1; Rightarrow ; x_1=-x_2-x_3-x_4+1.$$

Видео:Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Случай $kneq$ и $neq$

Продолжим решение методом Гаусса. Так как $kneq$ и $neq$, то $(1-k)(k+3)neq$. Следовательно, мы можем разделить вторую и третью строки на $1-k$, четвёртую строку – на выражение $(1-k)(k+3)$. С полученной после этого матрицей продолжим операции обратного хода метода Гаусса:

$$ left(begin 1 & k &1 &1&1\ 0 & 1 &-1 &0&0\ 0 & 0 &1&-1&0\ 0 & 0 &0&1&fracend right) begin r_1-r_4\phantom\phantom\r_3+r_4endrightarrow left(begin 1 & k &1 &0&frac\ 0 & 1 &-1 &0&0\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-r_3\r_2+r_3\phantom\phantomendrightarrow\ rightarrowleft(begin 1 & k &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) begin r_1-kcdot\phantom\phantom\phantomendrightarrow left(begin 1 & 0 &0 &0&frac\ 0 & 1 &0 &0&frac\ 0 & 0 &1&0&frac\ 0 & 0 &0&1&fracendright) $$

Из последней матрицы имеем: $x_1=x_2=x_3=x_4=frac$.

  • При $k=-3$ система несовместна.
  • При $k=1$ система является неопределённой. Общее решение системы: $left<begin& x_1=-x_2-x_3-x_4+1;\&x_2in,;x_3in,;x_4in. endright.$
  • При $kneq$ и $kneq$ система является определённой. Решение системы: $x_1=x_2=x_3=x_4=frac$.

Видео:Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)Скачать

Алгебра 8 класс (Урок№33 - Уравнения с параметром. Контрольный урок.)

Решение уравнений с параметром по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют задачи, в которых необходимо произвести поиск решений линейных и квадратных уравнений в общем виде или произвести поиск количества корней, которое имеет уравнение в зависимости от значения параметра. Все эти задачи с параметрами.

Найдите число решений уравнения в зависимости от параметра а

Рассмотрим следующие уравнения в качестве наглядного примера:

[у = kx,] где [x, y] — переменные, [k ]- параметр;

[у = kx + b,] где [x, y] — переменные, [k, b] — параметр;

[аx^2 + bх + с = 0,] где [x] — переменная, [а, b, с] — параметр.

Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.

Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно [x] при значениях параметра, определенных в первом пункте.

3. Решить исходное уравнение относительно [x] при значениях параметра, отличающихся от выбранных в первом пункте.

Допустим, дано такое уравнение:

[mid 6 — x mid = a.]

Проанализировав исходные данные, видно, что a [ge 0.]

По правилу модуля [6 — x = pm a, ] выразим [x:]

Ответ: [x = 6 pm a,] где [a ge 0.]

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Где можно решить уравнение с параметром онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

🌟 Видео

Найти все p, при которых уравнение имеет целые корни. Задача с параметромСкачать

Найти все p, при которых уравнение имеет целые корни. Задача с параметром

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Профильный ЕГЭ 2023. Задача 17. Параметры. Методы решенияСкачать

Профильный ЕГЭ 2023. Задача 17. Параметры. Методы решения

ИГРА В СЛУЧАЙНОСТЬ | Парадоксы, рулетка и квантовая физика [LIM №4]Скачать

ИГРА В СЛУЧАЙНОСТЬ | Парадоксы, рулетка и квантовая физика [LIM №4]

Простите, где все?! — РАЗНЫЕ ТЕЛЕГИСкачать

Простите, где все?! — РАЗНЫЕ ТЕЛЕГИ

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.
Поделиться или сохранить к себе: