Назначение сервиса . Сервис используется для нахождения частных производных функции (см. пример). Решение производится в онлайн режиме и оформляется в формате Word .
- Решение онлайн
- Видеоинструкция
- Также решают
- Правила ввода функции, заданной в явном виде
- Правила ввода функции, заданной в неявном виде
- Частные производные функции нескольких переменных
- Частные производные функции двух переменных. Понятие и примеры решений
- В чём смысл частных производных?
- Систематизируем элементарные прикладные правила:
- Примеры решений задач: функции нескольких переменных
- Примеры: область определения ФНП
- Примеры: частные производные ФНП
- Градиент, производная по направлению
- Касательная плоскость и нормаль
- Экстремумы функции нескольких переменных
- Приближенные вычисления
- Ряд Тэйлора
- Наибольшее и наименьшее значение в области
- Решение контрольной
- Помощь с решением заданий
- 🔥 Видео
Правила ввода функции, заданной в явном виде
- Примеры
x 2 +xy ≡ x^2+x*y .
cos 2 (2x+y) ≡ (cos(2*x+y))^2≡ (x-y)^(2/3)
Правила ввода функции, заданной в неявном виде
- Все переменные выражаются через x,y,z
- Примеры
≡ x^2/(z+y)
cos 2 (2x+zy) ≡ (cos(2*x+z*y))^2≡ z+(x-y)^(2/3)
Видео:Частные производные функции многих переменныхСкачать

Частные производные функции нескольких переменных
Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1
Пример 2 . Найти частные производные 
Находим частные производные:
Найдем частные производные в точке А(1;1)
Находим вторые частные производные:
Видео:11. Производная неявной функции примерыСкачать

Частные производные функции двух переменных.
Понятие и примеры решений
На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции. Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.
Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы.
Быстренько повторим понятие функции двух переменных, я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как 


Пример: 
Иногда используют запись 


С геометрической точки зрения функция двух переменных 
никогда не давал списывать мой вузовский преподаватель является моим «коньком».
Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.
Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:
…да, кстати, для этой темы я таки создал маленькую pdf-книжку, которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:
Найти частные производные первого и второго порядка функции
Сначала найдем частные производные первого порядка. Их две.
Обозначения:




Начнем с 

Комментарии к выполненным действиям:
(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом.
Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без 

Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме.
(2) Используем правила дифференцирования 







(3) Используем табличные производные 

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.
Теперь 

(1) Используем те же правила дифференцирования 



(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для 


В чём смысл частных производных?
По своей сути частные производные 1-го порядка напоминают «обычную» производную:







! Примечание: здесь подразумеваются направления, которые параллельны координатным осям.
В целях лучшего понимания рассмотрим конкретную точку 


Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции 


Теперь узнаем характер «местности» по направлению оси ординат: 
Производная по «игрек» положительна, следовательно, в точке 


Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.
Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности 

Систематизируем элементарные прикладные правила:
1) Когда мы дифференцируем по 

2) Когда же дифференцирование осуществляется по 

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (

Шаг второй. Находим частные производные второго порядка. Их четыре.
Обозначения:








Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной.
Для удобства я перепишу уже найденные частные производные первого порядка: 
Сначала найдем смешанные производные:
Как видите, всё просто: берем частную производную 
Аналогично:
В практических примерах можно ориентироваться на следующее равенство:
Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.
Находим вторую производную по «икс».
Никаких изобретений, берем 
Аналогично:
Следует отметить, что при нахождении 

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных. Но всему своё время:
Вычислить частные производные первого порядка функции 

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».
Набиваем руку на более сложных примерах:
Найти частные производные первого порядка функции 


Решение: Находим частные производные первого порядка:
Обратите внимание на подстрочный индекс: 

(1) Выносим все константы за знак производной. В данном случае 


(2) Не забываем, как правильно дифференцировать корни.
(1) Выносим все константы за знак производной, в данной случае константой является 
(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения 
(3) Не забываем, что 

Теперь находим смешанные производные второго порядка:

Запишем полный дифференциал 
Полный дифференциал первого порядка функции двух переменных имеет вид:
В данном случае:
То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов 

И по неоднократным просьбам читателей, полный дифференциал второго порядка.
Он выглядит так:
ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:
и запишем «монстра», аккуратно «прикрепив» квадраты 

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:
Найти частные производные первого порядка функции 


Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.
Рассмотрим серию примеров со сложными функциями:
Найти частные производные первого порядка функции 
Записать полный дифференциал 
Решение:
(1) Применяем правило дифференцирования сложной функции 

(2) Здесь используем свойство корней: 


Аналогично:
Запишем полный дифференциал первого порядка:
Найти частные производные первого порядка функции 
Записать полный дифференциал 
Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое
Довольно часто все вышерассмотренные правила применяются в комбинации.
Найти частные производные первого порядка функции 
(1) Используем правило дифференцирования суммы
(2) Первое слагаемое в данном случае считается константой, поскольку в выражении 


(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: 

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:
Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:
– А почему это ты от меня никуда не убегаешь?
– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!
На что злобная производная с коварной улыбкой отвечает:
– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.
Кто понял анекдот, тот освоил производные, минимум, на «тройку»).
Найти частные производные первого порядка функции 
Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.
Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.
Дана функция двух переменных 
Это пример для самостоятельного решения. Полное решение и образец оформления где-то рядом.
Что дальше? Дальше знакомимся с родственной темой – частными производными функции трёх переменных. После этого я рекомендую ДОБРОСОВЕСТНО (жить будет легче ;)) отработать технику дифференцирования на уроках Производные сложных функций нескольких переменных, Как проверить, удовлетворяет ли функция уравнению? и Частные производные неявно заданной функции. И, наконец, обещанная вкусняшка – Производная по направлению и градиент функции. Стратегия и тактика знакомы – сначала учимся решать, затем вникаем в суть!
Решения и ответы:
Пример 2: 






Пример 4: Ссылка для просмотра или скачивания ниже.
Пример 6: 

Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
Видео:Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Примеры решений задач: функции нескольких переменных
В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:
Видео:28. Частные производные неявной функции. примерСкачать

Примеры: область определения ФНП
Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.
Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.
Видео:Производная неявной функцииСкачать

Примеры: частные производные ФНП
Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$
Задача 4. Найти частные производные второго порядка $z=sqrt$
Задача 5. Найти частные производные сложной функции:
$$ z=u^2 cdot ln v; quad u=frac, , v=x^2+y^2.$$
Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.
Задача 7. Найти полный дифференциал данной функции
Задача 8. Найти дифференциал второго порядка функции:
Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $sin(xz)+cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.
Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.
Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Градиент, производная по направлению
Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $overline$. Вычислить наибольшую скорость изменения функции в данной точке.
Задача 13. Найдите градиент, производную по направлению $overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $overline=$, $M(1,3,1)$.
Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.
Видео:18+ Математика без Ху!ни. Производная неявной функции.Скачать

Касательная плоскость и нормаль
Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.
Задача 16. Для кривой $overline=overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.
$$ overline(t)=(t^2-3)overline + (t^3+2)overline+ln t overline, quad t_0=1 $$
Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.
Видео:27. Дифференцирование неявной функции двух переменныхСкачать

Экстремумы функции нескольких переменных
Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.
Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.
Задача 20. Исследовать на экстремум функцию $z=x^4+xy+fracy^2+5$.
Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.
Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.
Видео:Производная по направлениюСкачать

Приближенные вычисления
Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.
Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.
Видео:Первая и вторая производная неявной функцииСкачать

Ряд Тэйлора
Задача 25. Разложите функцию $f(x,y)=x^2ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.
Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.
Видео:Математика Без Ху!ни. Производная функции, заданной параметрически.Скачать

Наибольшее и наименьшее значение в области
Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 le x le 1; 0le y le 2$. Сделать чертёж области $D$.
Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.
Видео:29. Частные производные и дифференциал функции заданной неявно. примерСкачать

Решение контрольной
Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.
Видео:14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать

Помощь с решением заданий
Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.
🔥 Видео
7. Частные производные примеры решения №1Скачать

6. Частные производные функции двух переменныхСкачать

Частные производные первого и второго порядка от функций нескольких переменныхСкачать

7.5 ЧАСОВ МАТАНА!!! ПОДАРОК ВСЕМ СТУДЕНТАМ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТАМ И ЭКЗАМЕНАМ ОТ ЁЖИКА В МАТАНЕ!!!Скачать

Производные с нуля до уровня ЕГЭ №8Скачать

18. Частные производные высших порядков (начало) №1Скачать

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

≡ (x-y)^(2/3)
≡ x^2/(z+y)
≡ z+(x-y)^(2/3)

























