Прусская Синь | |
---|---|
Измельчённая берлинская лазурь, размывка на бумаге | |
HEX | 003153 |
RGB¹ (r, g, b) | (0, 49, 83) |
CMYK (c, m, y, k) | (63, 35, 14, 72) |
HSV² (h, s, v) | (205°, 100%, 43%) |
|
Берлинская лазурь (железная лазурь, прусский синий, парижская лазурь, прусская лазурь, гамбургская синь, нейблау, милори) — синий пигмент, смесь гексацианоферратов (II) от KFe[Fe(CN)6] до Fe4[Fe(CN)6]3. Получаемая другими способами турнбулева синь, для которой следовало бы ожидать формулы Fe3[Fe(CN)6]2, в действительности представляет собой ту же смесь веществ.
- Содержание
- История и происхождение названия
- Получение
- Свойства
- Применение
- В качестве пигмента
- Лекарственное средство
- Ветеринарный препарат
- Другие сферы применения
- Токсичность
- Берлинская лазурь — синий краситель с поэтичным названием
- История появления названия
- Способы получения
- Свойства
- Применение
- ЛАЗУРЬ БЕРЛИНСКАЯ
- 🔍 Видео
Видео:Редуцированные в истории русского языка. Ер (Ъ) и Ерь (Ь), твёрдый и мягкий знаки.Скачать
Содержание
- 1 История и происхождение названия
- 2 Получение
- 3 Свойства
- 4 Применение
- 4.1 В качестве пигмента
- 4.2 Лекарственное средство
- 4.3 Ветеринарный препарат
- 4.4 Другие сферы применения
- 5 Токсичность
Видео:№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать
История и происхождение названия
Точная дата получения берлинской лазури неизвестна. Согласно наиболее распространённой версии, она была получена в начале XVIII века (1706) в Берлине красильщиком Дисбахом. В некоторых источниках его называют Иоганном Якобом Дисбахом (нем. Johann Jacob Diesbach ).
По версии, опубликованной в 1731 году врачом и химиком Шталем, ключевую роль в изобретении и продвижении на рынок берлинской лазури, наряду с Дисбахом, сыграл Иоганн Конрад Диппель — немецкий врач, алхимик и авантюрист. По одной версии, Дисбах просто создал новый пигмент, когда работал в лаборатории Диппеля в Берлине. По другой, излагаемой современным французским историком Мишелем Пастуро, Дисбах, аптекарь и торговец красками, купил у Диппеля некачественный поташ, используемый для осаждения настоя кошенили. Поташ, проданный Диппелем, уже был ранее использован им для очистки костяного масла, в результате чего вместо привычного красного у Дисбаха получился великолепный синий осадок. Дисбах обратился к Диппелю с вопросами, а уже тот наладил производство нового пигмента и десять лет скрывал его состав, благодаря чему нажил состояние. В 1724 году рецепт раскрыл и опубликовал английский химик Джон Вудворт, после чего берлинская лазурь стала производиться по всей Европе.
Интенсивный ярко-синий цвет соединения и место получения дали начало названию. С современной точки зрения, получение берлинской лазури состояло в осаждении гексацианоферрата (II) железа (II) путём добавления к «жёлтой кровяной соли» солей железа (II) (например, «железного купороса») и последующему окислению до гексацианоферрата (II) железа (III). Можно было обойтись и без окисления, если сразу добавлять к «жёлтой кровяной соли» соли железа (III).
Другие тривиальные названия этого соединения («железная лазурь», «прусский синий», «парижская лазурь», «прусская лазурь», «гамбургская синь») также обязаны происхождением красивому синему цвету этого соединения.
Название «турнбулева синь» происходит от названия шотландской фирмы «Артур и Турнбуль», которая в конце XVIII века производила краски. В их синтезе к «красной кровяной соли» добавляли соль железа (II) (железный купорос). При этом получалось соединение, очень похожее на «берлинскую лазурь», такого же красивого синего цвета, также существующего в растворимой и нерастворимой формах. Окончательно тот факт, что «берлинская лазурь» и «турнбулева синь» — это одно и то же вещество, был установлен только в XX веке, когда в 1928 году были измерены магнитные моменты этих соединений, а в 1936 году получены их рентгенограммы.
Под названием «парижская лазурь» одно время предлагалась очищенная «берлинская лазурь».
Видео:Краткий курс словацкой грамматики III. Окончание –l у неодушевленных существительных мужского родаСкачать
Получение
Метод приготовления держался в секрете до момента публикации способа производства англичанином Вудвордом в 1724 году.
Берлинскую лазурь можно получить, добавляя к растворам гексацианоферрата (II) калия («жёлтой кровяной соли») соли трёхвалентного железа. При этом, в зависимости от условий проведения, реакция может идти по уравнениям:
или в ионной форме,
Получающийся гексацианоферрат (II) калия-железа (III) растворим, поэтому носит название «растворимая берлинская лазурь».
В структурной схеме растворимой берлинской лазури (кристаллогидрата вида KFe III [Fe II (CN)6]·H2O) ионы Fe 2+ и Fe 3+ располагаются в кристаллической решётке однотипно, однако по отношению к цианидным группам они неравноценны, преобладает тенденция к размещению между атомами углерода, а Fe 3+ — между атомами азота.
или в ионной форме,
Образующийся нерастворимый (растворимость 2⋅10 −6 моль/л) осадок гексацианоферрата (II) железа (III) носит название «нерастворимая берлинская лазурь».
Приведённые выше реакции используются в аналитической химии для определения наличия ионов Fe 3+ .
Ещё один способ состоит в добавлении к растворам гексацианоферрата (III) калия («красной кровяной соли») солей двухвалентного железа. Реакция идёт также с образованием растворимой и нерастворимой формы (см. выше), например, по уравнению (в ионной форме)
Ранее считалось, что при этом образуется гексацианоферрат (III) железа (II), то есть Fe II 3[Fe(CN)6]2, именно такую формулу предлагали для «турнбулевой сини». Теперь известно (см. выше), что турнбулева синь и берлинская лазурь — одно и то же вещество, а в процессе реакции происходит переход электронов от ионов Fe 2+ к гексацианоферрат (III)-иону (валентная перестройка Fe 2+ + [Fe 3+ (CN)6] к Fe 3+ + [Fe 2+ (CN)6] происходит практически мгновенно, обратную реакцию можно осуществить в вакууме при 300 °C).
Эта реакция также является аналитической и используется, соответственно, для определения ионов Fe 2+ .
При старинном методе получения берлинской лазури, когда смешивали растворы жёлтой кровяной соли и железного купороса, реакция шла по уравнению
Получившийся белый осадок гексацианоферрата(II) калия-железа (II) (соль Эверитта) быстро окисляется кислородом воздуха до гексацианоферрата (II) калия-железа (III), то есть берлинской лазури.
Видео:Извлечение характерных признаков из информации о взаимодействии пользователей с компьютерной мышьюСкачать
Свойства
Термическое разложение берлинской лазури идёт по схемам:
Интересным свойством нерастворимой формы берлинской лазури является то, что она, будучи полупроводником, при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком — уникальное свойство среди координационных соединений металлов.
Видео:Русский язык 7 класс (Урок№35 - Правописание одной и двух н в наречиях на -о и -е.)Скачать
Применение
В качестве пигмента
Применяется как синий пигмент с торговым названием «милори».
Впервые железная лазурь была случайно открыта красильщиком Дисбахом в Берлине и стала использоваться в качестве пигмента в 1704 году.
Цвет железной лазури изменяется от тёмно-синего к светло-синему по мере увеличения содержания калия. Интенсивный ярко-синий цвет берлинской лазури обусловлен, вероятно, одновременным наличием железа в различных степенях окисления, так как наличие в соединениях одного элемента в разных степенях окисления часто даёт появление или усиление цветности.
Тёмная лазурь жёсткая, трудно смачивается и диспергируется, в накрасках лессирует и, всплывая, даёт зеркальное отражение жёлто-красных лучей («бронзирует»).
Укрывистость тёмной железной лазури 20 г/м², светлой 10 г/м². Маслоёмкость 40—60 г/100г.
Железная лазурь в воде не растворима, неядовита, обладает высокой красящей способностью, светостойкостью и атмосферостойкостью.
Устойчива к нагреванию до 180 °C. Обладает стойкостью к кислотам, но легко разлагается даже самыми слабыми щелочами.
Железная лазурь, благодаря хорошей укрывистости и красивому синему цвету, находит широкое применение в качестве пигмента для изготовления красок и эмалей.
Также её применяют в производстве печатных красок, синей копирки, подкрашивания бесцветных полимеров типа полиэтилена.
Применение железной лазури ограничено её неустойчивостью по отношению к щелочам, под действием которых разлагается с выделением гидроксида железа Fe(OH)3. Она не может использоваться в композиционных материалах, имеющих в своём составе щелочные компоненты, и для окраски по известковой штукатурке.
В таких материалах в качестве синего пигмента, как правило, используют органический пигмент голубой фталоцианиновый.
Лекарственное средство
Также используется как антидот (таблетки Ферроцин) при отравлении солями таллия и цезия, для связывания поступающих в желудочно-кишечный тракт радиоактивных нуклидов и тем самым препятствует их всасыванию. Код АТХ V03AB31 . Фармакопейный препарат Ферроцин был разрешён Фармкомитетом и Минздравом СССР в 1978 году для применения при остром отравлении человека изотопами цезия. Ферроцин состоит из 5 % железо-гексацианоферрата калия KFe[Fe(CN)6] и 95 % железо-гексацианоферрата Fe4[Fe(CN)6]3.
Ветеринарный препарат
Для реабилитации земель, загрязнённых после Чернобыльской катастрофы, был создан ветеринарный препарат на основе медицинского активного компонента Ферроцин — Бифеж. Внесён в Государственный реестр лекарственных средств для ветеринарного применения под номером 46-3-16.12-0827№ПВР-3-5.5/01571.
Препарат Бифеж представляет собой Берлинскую лазурь (10 %), нанесённую на органический носитель — гранулы целлюлозы (90 %). Использование носителя упрощает дозировку в бытовых условиях.
В ходе начальных испытаний препараты с берлинской лазурью сокращали переход радиоизотопа Cs-137 из подножных кормов в молоко и мясо в 1,5–6 раз. Дальнейшие исследования показали, что ежедневное добавление 30 г препарата Бифеж к кормам снижает содержание радиоцезия в мышечной ткани коров, бычков и овец в 12—13 раз, во внутренних органах — в 25—90 раз, в коровьем молоке — в 10—20 раз. Использование более 500 тонн препарата Бифеж с 1993 по 2003 год позволило реабилитировать более 250 тыс. коров и очистить от радиоцезия более 500 тыс. тонн молока в России, Украине и Белоруссии.
Другие сферы применения
До того, как мокрое копирование документов и чертежей было вытеснено сухим, берлинская лазурь являлась основным образующимся пигментом в процессе светокопировании (так называемые «синьки», процесс цианотипии).
В смеси с маслянистыми материалами используется для контроля плотности прилегания поверхностей и качества их обработки. Для этого поверхности натирают указанной смесью, затем соединяют. Остатки нестёршейся синей смеси указывают более глубокие места.
Также используется как комплексообразующий агент, например, для получения пруссидов.
В XIX веке использовалась в России и Китае для подкрашивания спитой заварки, а также для перекраски чёрного чая в зелёный.
Видео:Экстраокулярное зрение. Телевидение Уругвая. Кожное "зрение".Скачать
Токсичность
Не является токсичным веществом, хотя в её составе и есть цианидный анион CN − , так как он прочно связан в устойчивом комплексном гексацианоферрат 4− -анионе (константа нестойкости этого аниона составляет лишь 4⋅10 −36 ).
Видео:Заключительное словоСкачать
Берлинская лазурь — синий краситель с поэтичным названием
Берлинская лазурь — это яркий синий пигмент, используется как краситель, носит разные названия, каждое из которых красивее предыдущего. Лазурь парижская и железная, синь железная и гамбургская, прусская синь, милори. Это лишь малая часть названий, под которыми данное вещество встречается.
Видео:7. Как оксид влияет на фон осветленияСкачать
История появления названия
Доподлинно о месте, где получена берлинская лазурь впервые, не известно. Предположительно, это случилось в начале 18 столетия в городе Берлине. Отсюда и название вещества. А получил его немецкий мастер Дизбах, который разрабатывал красящие вещества. Он экспериментировал с карбонатом калия и однажды раствор солей железа и поташ (второе название карбоната) дал неожиданный, просто великолепный синий цвет.
Чуть позже Дизбах обнаружил, что использовал прокаленный поташ, который находился в сосуде, испачканном бычьей кровью. Дешевый способ, которым была получена железная лазурь, а также ее устойчивость к кислотам, насыщенность оттенка и широта использования сулили огромные прибыли производителю. Неудивительно, что Дизбах сохранил в тайне, как производится берлинская лазурь. Получение ее через 20 лет раскрыл Джон Вудворд.
Видео:Крокусы. Несложный этюд для начинающих. Живопись маслом.Скачать
Способы получения
Рецепт Джона Вудворда: кровь животного прокалить с карбонатом калия, добавить туда воду и раствор железного купороса, в котором предварительно растворили алюминиевые квасцы. В смесь добавить немного кислоты, тогда произойдет образование берлинской лазури. Позже химик Пьер Жозеф Макёр из Франции доказал, что любая часть останков отлично заменяет кровь, результат получается тот же.
Сейчас произвести лазурь берлинскую можно с помощью другого, «бескровного» метода. К нагретой желтой кровяной соли, растворенной в воде, добавляется железный купорос в виде раствора. В осадок выпадает белое вещество, которое синеет при воздействии на него воздуха. Это и есть берлинская лазурь. Чтобы ускорить процесс синения белого осадка, можно добавить немного кислоты или хлора.
В 1822 году Леопольд Гмелин, немецкий химик, получил красную кровяную соль, эмпирическая формула которой K3[Fe(CN)6], в ней степень окисления железа +3, а не +2, как в желтой кровяной соли. При реакции с сульфатом железа она также дает интенсивную синюю окраску. Полученное таким способом вещество в честь основателя фирмы «Артур и Турнбуль» назвали турнбулевой синью.
Только в XX веке доказали, что под разными названиями прячется одно вещество, полученное различными способами. Назовите вы его турнбулева синь или берлинская лазурь, формула будет одна и та же:
где в кристаллической решетке атомы Fe 2+ стремятся разместиться между углеродными атомами, а Fe 3+ — между азотными.
Видео:Циклон означает вращающийсяСкачать
Свойства
Парижская лазурь имеет множество оттенков от лазурного до темного, насыщенного синего. Причем чем большее количество ионов калия содержится, тем светлее будет цвет.
Укрывистость железной лазури разная и зависит от оттенка. Варьирует от 10 (у светлого) до 20 г на м. кв.
Берлинская лазурь не растворяется в воде, содержит цианистую группу, но при этом абсолютно безопасна для здоровья и не ядовита даже при попадании в желудок. Способность красящая весьма высокая, не выцветает под действием солнечных лучей. Выдерживает нагревание до 180°C и стойка к воздействию кислотами. Но практически мгновенно разлагается в щелочной среде.
Берлинская лазурь встречается как в коллоидной, так и в нерастворимой форме. Нерастворимая является полупроводником. Недавно было открыто еще одно интересное свойство кристалла — при охлаждении до 5,5°K он становится ферромагнетиком.
Видео:Чистоговорки на сложные слоги сна, сны, сну, сниСкачать
Применение
В 18-19 веках гамбургскую синь применяли при производстве синих красок. Но они оказались неустойчивыми и разрушались под действием щелочной среды. Именно поэтому берлинская лазурь и не подходит для окраски штукатурки.
Сегодня милори применяется не очень широко. Чаще всего ее используют в печати, подкрашивают ею и полимеры, в частности полиэтилен.
В медицине вещество применяется как антидот при отравлении радионуклидами цезия и таллия.
Используют его и в ветеринарии. Если животные получают ежедневно небольшое количество лазури, то радионуклиды не откладываются в молоке, мясе и ливере. Использовалось это свойство после Чернобыля на территории России, Украины и в Беларуси.
Видео:О ФРАЗЕ, РЕЧЕВОМ ТАКТЕ, ФОНЕТИЧЕСКОМ СЛОВЕ, СЛОГЕ И ЗВУКЕ. СЕГМЕНТНЫЕ И СУПЕРСЕГМЕНТНЫЕ ЕДИНИЦЫСкачать
ЛАЗУРЬ БЕРЛИНСКАЯ
ЛАЗУРЬ БЕРЛИНСКАЯ. Краситель замечательного синего цвета с таким поэтическим названием появился в Германии около двухсот лет назад. Точных данных о времени и авторе его открытия не сохранилось: об этом не было никаких научных публикаций, сохранялся в тайне и способ получения нового вещества. Полагают, что берлинская лазурь была случайно получена в начале 18 в. в Берлине красильным мастером Дизбахом. В своем производстве он использовал поташ (карбонат калия К2СО3) и однажды раствор поташа неожиданно дал с солями железа красивое синее окрашивание. При проверке оказалось, что поташ из этой партии был ранее прокален в сосуде, в котором была бычья кровь. Осадок, который давал этот поташ с солями железа, представлял собой после высушивания темно-синюю массу с красновато-медным металлическим блеском. Попытка использовать это вещество для окрашивания тканей оказалась удачной. Краска была относительно дешевой, неядовитой, устойчивой к слабым кислотам, а главное – она обладала исключительно интенсивным цветом. Например, для получения голубой краски достаточно было на 200 частей белил взять всего одну часть нового пигмента, т.е. в девять раз меньше, чем традиционного ультрамарина. Новая краска, названная берлинской лазурью и сулившая большие выгоды ее обладателям, быстро вытеснила прежний ультрамарин, ее использовали в красильном и печатном деле, для изготовления синих чернил, масляных и акварельных красок, а в смеси с желтыми пигментами можно было получить широкую гамму зеленых цветов. Неудивительно, что способ получения берлинской лазури долгое время держали в секрете.
Секрет был раскрыт спустя два десятилетия английским врачом, естествоиспытателем и геологом Джоном Вудвордом. Теперь краску мог получить каждый желающий: для этого надо было прокалить с карбонатом калия сухую кровь, полученную с боен, обработать плав водой, добавить к раствору железный купорос с алюмокалиевыми квасцами и, наконец, подействовать на смесь соляной кислотой. Позднее французский химик Пьер Жозеф Макёр установил, что вместо крови можно использовать рог, кожу, шерсть и другие животные остатки, но что при этом происходит, оставалось невыясненным.
Механизм химических процессов, приводящих к образованию берлинской лазури, в общих чертах стал понятен гораздо позднее, в 19 в., благодаря работам многих ученых, среди которых был виднейший немецкий химик Юстус Либих. Животные остатки, и это было уже тогда хорошо известно, содержат азот и серу. Для получения красителя карбонат калия начали прокаливать при высокой температуре в больших чугунных сосудах, в которые еще специально добавляли железные опилки или стружки. В этих условиях карбонат калия частично превращался в цианид калия, а сера давала с железом сульфид. Если обработать такой плав горячей водой, то цианид калия прореагирует с сульфидом железа и образуется раствор желтой кровяной соли (гексацианоферрата(II) калия): 6KCN + FeS ® K4[Fe(CN)6] + K2S. Использование в этом процессе животных остатков объясняет тривиальное название (см. ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) этого комплексного соединения железа – «кровяная соль»; немецкий химик 18 в. Андреас Сигизмунд Маргграф назвал ее «щелочью, воспламененной бычьей кровью». А в названии «цианид» был использован греческий корень (от греч. kyanos – голубой, лазурный). Впоследствии были разработаны «бескровные» методы получения берлинской лазури.
Дальнейшие операции получения берлинской лазури были довольно простыми, и их легко воспроизвести, исходя из желтой кровяной соли. Если к ее горячему водному раствору добавить раствор железного купороса, то выпадет белый осадок, который быстро синеет на воздухе в результате окисления кислородом воздуха. Чтобы ускорить окисление, применяли также хлор или азотную кислоту. Еще проще было получить берлинскую лазурь непосредственным смешением растворов желтой кровяной соли и солей Fe 3+ . В таком случае не было необходимости проводить дополнительное окисление.
В зависимости от способа проведения этой реакции краситель получали либо в виде нерастворимого осадка, либо в виде коллоидного раствора, который получается, например, при промывании осадка большим количеством воды или в присутствии щавелевой кислоты. Коллоидный раствор получил название «растворимой берлинской лазури». Были у красителя и другие названия. Так, очищенное вещество в 19 в. поступало в продажу под названием «парижская лазурь», его смесь с желтой краской называли «прусской зеленью», а прокаливанием получали «жженую берлинскую лазурь» – красновато-коричневый порошок, мало отличающийся по составу от простого оксида железа Fe2O3. Можно было встретить и другие торговые названия берлинской лазури: прусская лазурь, железная лазурь, гамбургская синь, нейблау, милори и другие, но все они в своей основе содержали одно и то же вещество.
Однако со временем выяснилось, что краски на основе берлинской лазури не так уж хороши, как казались вначале: они очень неустойчивы по отношению к щелочам, под действием которых разлагаются с выделением гидроксида железа Fe(OH)3, и поэтому не пригодны для красок, имеющих щелочную реакцию, и для окраски по известковой штукатурке. Поэтому в настоящее время берлинская лазурь имеет лишь ограниченное практическое применение – ее используют, например, для получения печатной краски, синей копирки, подкрашивания бесцветных полимеров типа полиэтилена. Зато сама реакция образования берлинской лазури уже более 200 лет с успехом используется в аналитической химии. Еще в 1751 А.С.Маргграф с помощью этой чувствительной реакции обнаружил железо в различных соединениях щелочноземельных металлов, встречающихся в природе: известняке, флюорите, кораллах, костях и даже. в желчных камнях быков. А в 1784 ирландский химик Ричард Кирван впервые предложил использовать водный раствор гексацианоферрата(II) калия с точно известной концентрацией в качестве стандартного раствора для определения железа.
В 1822 немецкий химик Леопольд Гмелин окислением желтой кровяной соли хлором получил красную кровяную соль K3[Fe(CN)6] (в отличие от «желтой соли», она содержит железо в степени окисления +3). Раньше это вещество называли солью Гмелина или красной красильной солью. Оказалось, что раствор этой соли тоже дает вещество, окрашенное в интенсивный синий цвет, но только в реакции с солями Fe 2+ . Продукт реакции назвали турнбулевой синью (раньше писали и «турнбуллева», и «турнбуллова», а в Основах химии Д.И.Менделеева и в энциклопедии Брокгауза и Ефрона можно встретить «турнбульскую лазурь»). Впервые эта «синь» была получена только после открытия Гмелина и названа по имени одного из основателей фирмы «Артур и Турнбуль», которая в конце 18 в. занималась изготовлением химических продуктов для красильщиков в одном из предместий Глазго (Шотландия). Знаменитый английский химик Уильям Рамзай, первооткрыватель инертных газов, лауреат Нобелевской премии, предполагал, что турнбулеву синь открыл его дед – потомственный красильщик и компаньон фирмы «Артур и Турнбуль».
По внешнему виду турнбулева синь была очень похожа на берлинскую лазурь, и ее тоже можно было получать в виде нерастворимой и растворимой (коллоидной) формы. Особого применения этот синтез не нашел, так как красная кровяная соль дороже желтой. Вообще долгие годы эффективность способа получения «кровяных солей» была очень низкой. При прокаливании органических остатков азот, содержащийся в белках и нуклеиновых кислотах, терялся в виде аммиака, летучей синильной кислоты, различных органических соединений, и лишь 10–20% его переходило в продукт реакции – K4[Fe(CN)6]. Тем не менее, этот способ оставался единственным в течение почти 150 лет, до 1860-х, когда научились выделять цианистые соединения из доменного и коксового газов.
Комплексные ферроцианиды железа нашли широкое применение для качественного анализа растворов на присутствие даже очень малых количеств ионов Fe 2+ и Fe 3+ : синее окрашивание можно заметить, даже если в литре раствора содержится всего 0,7 мг железа! Соответствующие реакции приводятся во всех учебниках аналитической химии. Раньше (а иногда и сейчас) их записывали так: реакция на ионы Fe 3+ : 4FeCl3 + 3K4[Fe(CN)6] ® Fe4[Fe(CN)6]3 + 12KCl (образуется берлинская лазурь); реакция на ионы Fe 2+ : 3FeCl2 + 2K3[Fe(CN)6] ® Fe3[Fe(CN)6]2 + 6KCl (образуется турнбулева синь). Однако в 20 в. было установлено, что берлинская лазурь и турнбулева синь – это одно и то же вещество! Как же оно получается, и каков его состав?
Еще в 19 в. в результате многочисленных химических анализов было показано, что состав продуктов может зависеть как от соотношения исходных реагентов, так и от способа проведения реакции. Было ясно, что определение только элементного состава красителей не даст ответа на вопрос, что же получается на самом деле при взаимодействии ионов железа разной степени окисления с двумя гексацианоферратами калия. Нужно было применить современные методы установления состава неорганических соединений. При этом, в основном, исследовались растворимые формы обоих красителей состава KFe[Fe(CN)6], которые легче было очистить. Когда в 1928 были измерены магнитные моменты, а в 1936 получены рентгенограммы порошков, стало ясно, что очищенные берлинская лазурь и турнбулева синь – это действительно одно и то же соединение, которое содержит два типа атомов железа в разных степенях окисления, +2 и +3. Однако различить в то время структуры KFe II [Fe III (CN)6] и KFe III [Fe II (CN)6] и установить таким образом истинное строение вещества было невозможно. Это удалось сделать только во второй половине 20 в. с помощью современных физико-химических методов исследования: оптической спектроскопии, инфракрасной спектроскопии и гамма-резонансной (мёссбауэровской) спектроскопии. В последнем случае были специально получены осадки, меченные нуклидами железа 57 Fe. В результате было установлено, что в различных цианидах железа атомы Fe II окружены шестью атомами углерода, а в ближайшем соседстве с атомами Fe III находятся только атомы азота. Это означает, что шесть цианидных ионов в красителе связаны всегда с атомами железа(II), то есть правильны формулы KFe III [Fe II (CN)6] для растворимой формы и Fe4 III [Fe II (CN)6]3 – для нерастворимой формы «лазури» или «сини», независимо от того, получены ли они из FeCl2 и K3[Fe(CN)6] или из FeCl3 и K4[Fe(CN)6].
Как же можно объяснить эти результаты? Оказывается, при получении турнбулевой сини, когда смешиваются растворы, содержащие ионы Fe 2+ и [Fe(CN)6] 3– , происходит окислительно-восстановительная реакция; реакция эта самая простая из всех окислительно-восстановительных процессов, поскольку в ходе ее не происходит перемещения атомов, а просто один электрон с иона Fe 2+ переходит к иону [Fe(CN)6] 3– , и в результате получаются ионы Fe 3+ и [Fe(CN)6] 4 . Нерастворимая форма берлинской лазури преподнесла еще один сюрприз: будучи полупроводником, она при очень сильном охлаждении (ниже 5,5 К) становится ферромагнетиком – уникальное свойство среди координационных соединений металлов.
А какие реакции шли при старинном способе получения берлинской лазури? Если смешать в отсутствие окислителей растворы железного купороса и желтой кровяной соли, то получится белый осадок – соль Эверитта, состав которой соответствует формуле K2Fe II [Fe II (CN)6]. Эта соль очень легко окисляется и поэтому быстро синеет даже на воздухе, превращаясь в берлинскую лазурь.
До введения современной номенклатуры неорганических соединений многие из них имели множество названий, в которых впору было запутаться. Так, вещество с формулой K4[Fe(CN)6] называли и желтой кровяной солью, и железистосинеродистым калием, и ферроцианидом калия, и гексацианоферратом(II) калия, тогда как K3[Fe(CN)6] называли красной кровяной солью, или железосинеродистым калием, или феррицианидом калия, или гесацианоферратом(III) калия. Современная систематическая номенклатура использует последние названия в каждом ряду.
Обе кровяные соли в настоящее время входят в состав преобразователей ржавчины (они превращают продукты коррозии в нерастворимые соединения). Красную кровяную соли применяют в качестве мягкого окислителя (например, в отсутствие кислорода фенолы окисляются до свободных ароксильных радикалов); как индикатор при титровании, в фотографических рецептурах и как реагент для обнаружения ионов лития и олова. Желтую кровяную соль применяют при производстве цветной бумаги, как компонент ингибирующих покрытий, для цианирования стали (при этом ее поверхность насыщается азотом и упрочняется), как реагент для обнаружения ионов цинка и меди. Окислительно-восстановительные свойства этих соединений можно продемонстрировать на таком интересном примере. Желтая кровяная соль легко окисляется до красной растворами пероксида водорода: 2K4[Fe(CN)6] + H2O2 + 2HCl ® 2K3[Fe(CN)6] + 2KCl + 2H2O. Но, оказывается, что с помощью этого же реактива можно снова восстановить красную соль до желтой (правда, на этот раз – в щелочной среде): 2K3[Fe(CN)6] + H2O2 + 2KOH ® 2K4[Fe(CN)6] + 2H2O + O2. Последняя реакция – пример так называемого восстановительного распада пероксида водорода под действием окислителей.
🔍 Видео
Что такое "функция" простыми словами с показом отличий от зависимости (на примере окружности)Скачать
Буквы ъ, ь (ер, ерь). Азбука. Глаголица. Кириллица. История твердого и мягкого знаковСкачать
Художественное чтение в урочной и внеурочной деятельности обучающихсяСкачать
Астры. Способы выделения композиционного центра. Уроки живописиСкачать
Вступительное слово ESOСкачать
«Иверская» просительная ектения. ТВ Цветинская.Скачать
HPV-позитивные и негативные раки при опухолях головы и шеи (Артемьева А.С.)Скачать