- Условие
- Решение
- Составить уравнения плоскостей делящих пополам двугранные углы
- УСЛОВИЕ:
- РЕШЕНИЕ:
- ОТВЕТ:
- Решения пользователей
- РЕШЕНИЕ ОТ vk54215494
- Написать комментарий
- 1 ответ
- Двугранные углы и формула для их вычисления. Двугранный угол при основании четырехугольной правильной пирамиды
- Понятие о двугранном угле
- Уравнение плоскостей и формула для угла между ними
- Пирамида и ее углы
- Четырехугольная правильная пирамида и угол при ее основании
- 🎦 Видео
Условие
Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0
Решение
Ответ: В решение
Как получилось 2х-4у+2z+12? Вы х и число 6 умножили на 2?)
Жутко извиняюсь за неразборчивый почерк. Там 2x — 4y + 4z + 12. Мы всю левую часть умножили на 2.
«..Мы всю левую часть умножили на 2.» для чего, почему и всегда ли так нужно делать?
Если я вам скину пример похожий на этот сможете решить, я пытаюсь, пытаюсь с ответом ни как не сходится:( пожалуйста. Напишите уравнение плоскости, делящий пополам тупой двугранный угол, образованный плоскостями 6х-у+7z-3=0 и 2х+9у-z+7=0
Добавьте этот пример в Помогите решить на главной странице, вам помогут
а что если не будет в уровнение У?как найти этот У?
Скорее всего у вас другая задача, вам лучше обратится в ПОМОГИТЕ РЕШИТЬ на главной странице
Видео:Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекцииСкачать
Составить уравнения плоскостей делящих пополам двугранные углы
УСЛОВИЕ:
Составьте уравнения плоскостей делящих пополам двугранные углы, образованные плоскостями x-2y+2z+6=0 и 4x+2y-4z+5=0
РЕШЕНИЕ:
ОТВЕТ:
Добавил slava191 , просмотры: ☺ 11785 ⌚ 05.01.2015. математика 1k класс
Решения пользователей
РЕШЕНИЕ ОТ vk54215494
«..Мы всю левую часть умножили на 2.»
для чего, почему и всегда ли так нужно делать?
Написать комментарий
Делим обе части равенства на π
и умножаем на 4
+pi k, k in Z
Можно правую часть записать в виде двух ответов:
x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].
x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]
[b]x=-5 – наибольшее отрицательное [/b]
О т в е т. x=1+8n in Z или x=3+ 8n, n in Z
корни чередуются так:
. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .
[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)
a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член
4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0
5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.
∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.
складываем оба равенства:
2* ∠ А=126 градусов.
По формулам приведения:
sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1
sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1
sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z
Найдем корни, принадлежащие указанному отрезку с помощью неравенства:
-286 ° ≤ 90 ° +360 ° *k ≤ 204 °
-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °
-376 ° ≤ 360 ° *k ≤ 114 °
Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]
Значит, указанному отрезку принадлежат два корня:
x=90 ° +360 °* ([green]-1[/green])=-270 °
x=90 ° +360 °*[red]0[/red]=90 °
7. KT- средняя линия трапеции:
Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)
Высоты треугольников АКО и СОК равны половине высоты трапеции
S_( Δ АКО)+S_( Δ COK)=44
S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=
О т в е т. [b]176[/b]
B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды
Задание: cоставить уравнение плоскости(u), делящей пополам острый двугранный угол, образованный плоскостью(p1) 3x-4y+6z-2=0 с координатной плоскостью Oyz.
Окей, вторая плоскость(p2) получается задается уравнением By+Cz=0. Произвольная точка М(x0,y0,z0) принадлежит искомой плоскости только тогда, когда d(M,p1)=d(M,p2), то есть расстояния от точки, до заданных плоскостей плоскостей одинаковые, составила уравнение: $$ frac > = frac + C^ > > $$
Ответ должен быть(дан в пособии) $$ (3-sqrt )x-4y+6z-2=0$$ что явно не получится из того уравнения, что я составила. Как можно решить данную задачу?
задан 19 Окт 19:58
Условие надо хотя бы верно записывать. Наверняка так:
Угол, образованный плоскостью $% ; (p1): 3x-4y+6z-2=0 ;$% с координатной плоскостью $%Oyz$%.
@KristinaM: вторая плоскость, то есть Oyz, задаётся уравнением x=0. Поэтому никаких B, C там нет, а будет просто |x|. Тогда после раскрытия модулей возникнут две плоскости. Одна — та, что из ответа. Другая — ей перпендикулярная. По идее, там надо распознать, какая именно из этих плоскостей подходит, то есть какие углы будет острыми. Это легко проверить при помощи рассмотрения векторов нормали к плоскостям и их скалярных произведений.
К слову сказать, By+Cz=0 есть семейство плоскостей, проходящих через ось Ox.
Видео:Двугранный угол. Признак перпендикулярности плоскостей. Видеоурок 10. Геометрия 10 классСкачать
1 ответ
Нормали к плоскостям равной длины: $%;vec =(3; -4; 6); ; vec =(sqrt ; 0; 0),;$% угол между которыми острый. Тогда нормаль к биссекторной плоскости: $% ; vec =(3+sqrt ; -4; 6);-$% сумма нормалей.
Стало быть, уравнение: $%; (3+sqrt )x -4y+ 6z-2=0, ;$% учитывая точку $%(0; 1; 1)$%.
Для того, чтобы оценить ресурс, необходимо авторизоваться.
В учебно-методическом пособии излагаются теоретические основы аналитической геометрии в пространстве, приводятся решения большого числа задач. Пособие содержит варианты задач (с ответами) для самостоятельного решения, список формул и рекомендуемой литературы. Рекомендовано Уральским отделением Учебно-методического объединения вузов РФ в области строительного образования в качестве учебного пособия для студентов строительных специальностей направления 6533500 «Строительство» всех форм обучения. Подготовлено кафедрой высшей математики УГТУ-УПИ.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Двугранные углы и формула для их вычисления. Двугранный угол при основании четырехугольной правильной пирамиды
В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.
Видео:10 класс - Геометрия - Двугранный уголСкачать
Понятие о двугранном угле
Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.
Вам будет интересно: Географическая справка: площадь России в кв. км
Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.
Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.
Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Уравнение плоскостей и формула для угла между ними
Уравнение любой плоскости в пространстве в общем виде записывается так:
A × x + B × y + C × z + D = 0.
Здесь x, y, z — это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D — некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:
Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их направляющими векторами n1¯ и n2¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:
φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)).
Если подставить координаты векторов, то формула запишется в явном виде:
φ = arccos (|A1 × A2 + B1 × B2 + C1 × C2| / (√(A12 + B12 + C12) × √(A22 + B22 + C22))).
Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90o.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Пирамида и ее углы
Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n — целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).
Двугранные углы многогранника-пирамиды могут быть двух типов:
- между основанием и боковой стороной (треугольником);
- между двумя боковыми сторонами.
Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.
Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.
Видео:Видеоурок "Уравнение плоскости в отрезках"Скачать
Четырехугольная правильная пирамида и угол при ее основании
Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.
Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:
Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n1¯ для плоскости ACB будет равен:
Для определения направляющего вектора n2¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n2¯. Имеем:
AD¯ = D — A = (0; 0; h) — (a/2; -a/2; 0) = (-a/2; a/2; h);
AB¯ = B — A = (a/2; a/2; 0) — (a/2; -a/2; 0) = (0; a; 0);
n2¯ = [AD¯ × AB¯] = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a2/2).
Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n2¯, разделив его координаты на -a, получим:
Мы определили направляющие вектора n1¯ и n2¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:
φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)) = arccos (a / (2 × √h2 + a2/4)).
Преобразуем полученное выражение и перезапишем его так:
φ = arccos (a / √(a2 + 4 × h2)).
Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8o.
Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.
🎦 Видео
№174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, ACСкачать
Геометрия 10 класс (Урок№11 - Перпендикулярность плоскостей.)Скачать
17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать
Уравнение плоскости. 11 класс.Скачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Перпендикулярность плоскостей - определениеСкачать
11. Прямая в пространстве и ее уравненияСкачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
22. Двугранный уголСкачать
Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Двугранный уголСкачать