- Определение гиперболы, решаем задачи вместе
- Решить задачи на гиперболу самостоятельно, а затем посмотреть решения
- 2.4 Гипербола
- Гипербола — определение и вычисление с примерами решения
- Гипербола в высшей математике
- Каноническое уравнение гиперболы
- Вывод канонического уравнения гиперболы
- Готовые работы на аналогичную тему
- Каноническое уравнение гиперболы примеры решения
- Построение гиперболы по каноническому уравнению
- 🌟 Видео
Видео:§29 Эксцентриситет гиперболыСкачать

Определение гиперболы, решаем задачи вместе
Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.
Каноническое уравнение гиперболы имеет вид:

где a и b — длины полуосей, действительной и мнимой.
На чертеже ниже фокусы обозначены как 

На чертеже ветви гиперболы — бордового цвета.
При a = b гипербола называется равносторонней.
Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.
Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.
Точки 


называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).
называется эксцентриситетом гиперболы.
Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.
Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.
Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,
Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.
То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.
Подставляем и вычисляем:
Получаем требуемое в условии задачи каноническое уравнение гиперболы:

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет 
Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

Результат — каноническое уравнение гиперболы:
Если 




Если 




На чертеже расстояния обозначены оранжевыми линиями.
Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.
Прямые, определяемые уравнениями

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).
Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

где 





Пример 4. Дана гипербола 
Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. 

Получаем уравнение директрис гиперболы:
Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.
Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.
Асимптоты гиперболы определяются уравнениями

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.
Уравнение гиперболы, отнесённой к асимптотам, имеет вид:


В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.
Пример 5. Даны уравнения асимптот гиперболы 

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения 

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:
Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.
Видео:Видеоурок "Гипербола"Скачать

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения
Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:
1) b = 4 , а один из фокусов в точке (5; 0)
2) действительная ось 6, расстояние между фокусами 8
3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

2.4 Гипербола
Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.
Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.
Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).
По определению гиперболы F2M – F1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).
Исследуем формулу гиперболы.
1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.
В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).
2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

Итак, точки 

Если же в уравнении (2.7) принять x = 0, получим

Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.
Из уравнения (2.7) видно, что 

И являются Асимптотами гиперболы.
Если A = B, гипербола называется равносторонней.
Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).
Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.
Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Для любой гиперболы ε > 1, это число определяет форму гиперболы.
Пример 2.3. Найти координаты фокусов и вершин гиперболы
Написать уравнение ее асимптот и вычислить эксцентриситет.
Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.
Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.
Теперь можем написать координаты вершин и фокусов гиперболы:
Эксцентриситет 


Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

Гипербола — определение и вычисление с примерами решения
Гипербола:
Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек
Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы
Рис. 31. Вывод уравнения гиперболы.
Расстояние между фокусами (фокусное расстояние) равно 



Следовательно, согласно определению имеем
Возведем обе части равенства в квадрат, получим
Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим 









Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки 




Рис. 32. Асимптоты и параметры гиперболы
Определение: Найденные точки 
Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым 


Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.
В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.
Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы
Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству 



Пример:
Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).
Решение:
Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

Пример:
Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса
Решение:
Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: 









Рис. 33. Параметры эллипса и гиперболы
Вычислим длину мнимой полуоси 
Видео:§23 Построение гиперболыСкачать

Гипербола в высшей математике
Решая его относительно 
или одну двузначную функцию
Функция 




При 

При 




Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.
Гипербола в силу симметрии имеет вид, указанный на рис. 37.
Точки пересечения гиперболы с осью 


Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.
Рассмотрим прямую, заданную уравнением 




Умножим и разделим правую часть на
Будем придавать 



Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением 


Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.
Таким образом, гипербола имеет две асимптоты, определяемые уравнениями 
| Рекомендую подробно изучить предметы: |
|
| Ещё лекции с примерами решения и объяснением: |
- Парабола
- Многогранник
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
- Правильные многогранники в геометрии
- Многогранники
- Окружность
- Эллипс
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Фокусы гиперболыСкачать

Каноническое уравнение гиперболы
Вы будете перенаправлены на Автор24
Каноническое уравнение гиперболы имеет следующий вид: $frac — frac = 1$, где $a, b$ — положительные действительные числа.
Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.
Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Вывод канонического уравнения гиперболы
Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы
Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.
Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.
Рассмотрим произвольную точку $M$, принадлежащую гиперболе.
Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.
Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = sqrt$, а $r_2 = sqrt$.
Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $sqrt — sqrt = ±2a$ (1).
Умножим выражение (1) на $frac <$sqrt+ sqrt>$, получается:, получается:
Сложим уравнения (1) и (2), получим:
Возведём (3) в квадрат:
$frac + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$
$frac cdot x^2 – y^2 = c^2 – a^2$
Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $fracx^2 – y^2 = b^2$
Готовые работы на аналогичную тему
Получаем уравнение: $frac — frac = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.
Каноническое уравнение параболы и гиперболы немного похожи между собой.
Уравнение параболы выглядит следующим образом:
$y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.
Видео:§21 Каноническое уравнение гиперболыСкачать

Каноническое уравнение гиперболы примеры решения
Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.
Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:
Запишем знаменатели в виде степеней:
Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.
Видео:Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Построение гиперболы по каноническому уравнению
Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.
Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению
Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±frac$. Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±frac<sqrt> cdot x$
Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$. Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.
Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы. Выразим $y$ из канонического уравнения нашей гиперболы:
Найдём точки для положительной части гиперболы:
при $x = 3, y =2.5$, а при $x = 3, y ≈3,87$.
Теперь можно отложить все эти точки и построить график гиперболы.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 30.11.2021
🌟 Видео
Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

§31.1 Приведение уравнения кривой к каноническому видуСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать

Написать каноническое уравнение эллипса, если известны b и cСкачать

Как легко составить уравнение параболы из графикаСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

187. Гипербола.Скачать

Математический анализ, 15 урок, АссимптотыСкачать

Поверхности второго порядкаСкачать

ЭллипсСкачать




































