Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат

Уравнение прямой имеет вид: Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее, где х1 = у1 = 0; x2 = -2; y2 = -3.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

4.Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k1 = -3; k2 = 2 tgj = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее; j = p/4.

5.Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.

6. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее; 4x = 6y – 6;

2x – 3y + 3 = 0; Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее. Тогда y = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее. Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ееоткуда b = 17. Итого: Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее.

Ответ: 3x + 2y – 34 = 0.

Тема №2-4. Кривые 2 порядка: окружность, эллипс,гипербола,парабола.

Построение кривых 2 порядка. Составление уравнений кривых 2-го порядка.

Кривая второго порядка задана уравнением Ах 2 + 2Вху + Су 2 + 2Dx + 2Ey + F = 0.

Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.

1) Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее— уравнение эллипса.

2) Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее— уравнение “мнимого” эллипса.

3) Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее— уравнение гиперболы.

4) a 2 x 2 – c 2 y 2 = 0 – уравнение двух пересекающихся прямых.

5) y 2 = 2px – уравнение параболы.

6) y 2 – a 2 = 0 – уравнение двух параллельных прямых.

7) y 2 + a 2 = 0 – уравнение двух “мнимых” параллельных прямых.

8) y 2 = 0 – пара совпадающих прямых.

9) (x – a) 2 + (y – b) 2 = R 2 – уравнение окружности.

Рассмотрим кривые 2 порядка: окружность, эллипс, гиперболу, параболу.Окружностью называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Уравнение окружности радиуса R с центром в точке О ( х0 , у 0 ) имеет вид:

( х – х0 ) 2 + ( у – у 0 ) 2 = R 2 .

Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:

Пусть Р ( х1 , у 1 ) – точка окружности ( рис.1 ), тогда уравнение касательной к окружности в данной точке имеет вид:

Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2 :

k 2 / ( 1 + m 2 ) = R 2 .

Эллипс

Эллипсомназывается геометрическое место точек, сумма расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами эллипса, есть величина постоянная.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Уравнение эллипса( рис.1 ) :

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ ( рис.1 ) , при a Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Отрезок F1F2 = 2 с , где Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее, называется фокусным расстоянием. Отрезок AB = 2 a называется большой осью эллипса, а отрезок CD = 2 b – малой осью эллипса. Число e = c / a , e 2 / a 2 + у 2 / b 2 = 1 :

k 2 = m 2 a 2 + b 2 .

Гипербола

Гиперболой( рис.1 ) называется геометрическое место точек, модуль разности расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами гиперболы, есть величина постоянная.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Уравнение гиперболы( рис.1 ) :

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Здесь начало координат является центром симметрии гиперболы, а оси координат – её осями симметрии.

Отрезок F1F2 = 2 с , где Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее, называется фокусным расстоянием. Отрезок AB = 2 a называется действительной осью гиперболы, а отрезок CD = 2 b – мнимой осью гиперболы. Число e = c / a , e > 1 называется эксцентриситетом гиперболы. Прямые y = ± ( b / a ) x называются асимптотами гиперболы.

Пусть Р ( х1 , у 1 ) – точка гиперболы, тогда уравнение касательной к гиперболев данной точке имеет вид:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Условие касания прямой y = m x + k и гиперболы х 2 / a 2 – у 2 / b 2 = 1 :

k 2 = m 2 a 2 – b 2 .

Парабола

Параболой( рис.1 ) называется геометрическое место точек, равноудалённых от заданной точки F , называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Уравнение параболы( рис.1 ) :

Здесь ось ОХ является осью симметрии параболы.

Пусть Р ( х1 , у 1 ) – точка параболы, тогда уравнение касательной к параболев данной точке имеет вид:

Условие касания прямой y = m x + k и параболы y 2 = 2 p x :

1.Найдите все параметры, характеризующие данные кривые второго порядка. Определите типы этих кривых, сделайте рисунки.
а) 9x² + 64y²=576
б) y²=6x

в) 9x 2 -16y 2 =144

Решение.

a) 9x²+ 64y² = 576 — уравнение эллипса

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее— каноническое уравнение эллипса
a = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее= 8 и b = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее= 3 — полуоси эллипса

Точки А(8,0), А'(-8,0), В(0,3), В'(0,-3) — вершины эллипса

с = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Точки F( Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее,0) и F'(- Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее,0) — фокусы эллипса

ε = с/а =( Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее)/8 — эксцентриситет эллипса

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

б) y² = 6x — уравнение параболы, симметричной относительно оси Ox,

т.е. прямая у = 0 — ось симметрии.
2р = 6
р = 3
Точка F(3/2,0) — фокус параболы.
Прямая х = -3/2 — директриса параболы

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

в) Приведем данное уравнение к каноническому виду (разделив его на 144):

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Отсюда следует, что a 2 =16, b 2 =9. Следовательно, a=4 -действительная полуось, b=3 — мнимая полуось. Тогда Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ееЗначит, фокусы имеют координаты F1(-5,0), F2(5,0). Находим эксцентриситет Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее
Уравнения асимптот имеют вид у = Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее, а уравнения директрис Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

2. Определить вид и расположение кривой

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Решение.

Дополним члены, содержащие х и у соответственно, до полных квадратов:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями
Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Центр эллипса находится в точке щ Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее.

3. Найти координаты центра и радиус окружности x 2 +y 2 -6x+10y-15=0.

Решение.

В данном уравнении выделим полные квадраты, прибавляя и вычитая соответствующие числа. Получаем

Видео:Уравнение прямой проходящей через начало координат 7 - 8 клСкачать

Уравнение прямой проходящей через начало координат 7 - 8 кл

4.13. Уравнения прямых на координатной плоскости

Давайте рассмотрим такие функций, графики которых имеют вид прямых. Простоты ради, мы будем иметь дело с безразмерными величинами, а значит, в качестве осей у нас будут выступать простые числовые прямые, и все наши чертежи мы будем делать на обычной координатной плоскости.

Прямая, проходящая через начало координат

Построение графика по заданной функции

Пусть переменная (y) пропорциональна переменной (x) с коэффициентом пропорциональности (k) :

Давайте договоримся, что (x) здесь — это независимая переменная, а (y) — зависимая. Коэффициент (k) играет роль константы (параметра). В таких случаях говорят, что (y) является (однородной) линейной функцией от (x) . Графиком этой функции, как мы хорошо знаем, является прямая, проходящая через начало координат ((0, 0)) . Для построения этой прямой нам достаточно определить еще какую-либо одну ее точку ((x_1, y_1)) . Для этого положим, например, (x_1 = 1) . Тогда (y_1 = k cdot 1 = k) . Проводим через эту точку и начало координат прямую линию. Это и есть график функции (y) от (x) . Так, по крайней мере, обстоит дело в теории, а на практике точку ((x_1, y_1)) лучше брать настолько далеко от начала координат, насколько позволяет чертеж. В этом стучае прямую удается провести наиболее точно. Ниже приведен пример такого построения для функции (y=frac x) .

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Восстановление функции по графику

Решим теперь обратную задачу. Пусть на координатной плоскости с осями (x) и (y) нам дана прямая, проходящая через начало координат. Спрашивается: графиком какой функции она является? При этом подразумевается, что функция должна быть задана в виде формулы, связывающей переменные (x) и (y) . Такая формула носит название уравнения графика функции. В данном случае речь идет об уравнении прямой, проходящей через точку ((0,0)) .

Заранее ясно, что это уравнение имеет вид

От нас фактически только требуется найти значение константы (k) . Для этого отметим на прямой произвольную точку, отличную от ((0,0)) , и определим ее координаты ((x_1, y_1).) Эти координаты, очевидно, связаны соотношением

При этом следует особо подчеркнуть, что константа (k) не зависит от выбора точки ((x_1, y_1).) Какую бы точку на прямой мы не выбрали в качестве ((x_1, y_1),) мы придем к одному и тому же значению (k) . Таким образом,

Пример нахождения уравнения прямой приведен на следующем рисунке.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Отметим два особых случая. Во-первых, прямая может совпасть с осью (x) . Тогда значение (y) остается постоянным и равным нулю на всем ее протяжении. Тем не менее наше общее решение остается в силе. При этом оказывается, что (k = 0) и переменную (y) можно всё еще формально считать функцией от (x) :

Во-вторых, прямая может совпасть с осью (y) . В этом случае в каждой ее точке (x = 0) . Формула для константы (k) оказывается неприменимой, потому что число (x_0) , стоящее в знаменателе, обращается в нуль. Приходится признать, что мы не можем подобрать такую функцию (y) от (x) , которая имела бы подобный график. Разве что, мы можем теперь принять (y) за независимую переменную и формально рассматривать (x) как функцию от (y)

Несложно убедиться, что всякая точка, лежащая на оси (y) , удовлетворяет этому равенству. Заметим, что если бы мы захотели написать уравнение прямой, проходящей через начало координат, в самом общем виде, то мы могли бы это сделать так:

Это соотношение между (x) и (y) остается справедливым в обоих рассмотренных частных случаях, однако выбор параметров не является однозначным, так как в качестве пары чисел ((x_1, y_1)) можно взять координаты любой точки, принадлежащей прямой.

Произвольная прямая

Восстановление функции по графику

Начнем с обратной задачи. Пусть теперь на координатной плоскости дана произвольная прямая, не проходящая через начало координат. Вопрос нас будет интересовать всё тот же: графиком какой функции она является или, короче говоря, каково уравнение этой прямой?

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Отметим на прямой две любые несовпадающие точки и обозначим их координаты через ((x_0, y_0)) и ((x_1,y_1)) . Поместим в точку ((x_0, y_0)) начало новой системы координат с осями (x’) и (y’) , сонаправленными с соответствующими осями (x) и (y) старой системы.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Тогда координаты другой отмеченной точки в новой системе окажутся равны

(begin x_1′ \ y_1′ end = begin x_1 \ y_1 end — begin x_0 \ y_0 end = begin x_1 — x_0 \ y_1 — y_0end.)

Вообще, как мы знаем, новые («штрихованные») координаты любой точки связаны со старыми («нештрихованными») координатами соотношением

Наша прямая проходит через начало координат новой системы, поэтому мы можем сразу же выписать ее уравнение в «штрихованных» переменных:

Переходя к «нештрихованным» переменным, получаем

Что и решает поставленную задачу.

При желании, можно еще выразить функцию (y) от (x) в явном виде:

(y = k,x — k,x_0 + y_0)

(y = k,x + b,) где (b = — k,x_0 + y_0.)

Значения констант (k) и (b) не зависят от выбора точек ((x_0, y_0)) и ((x_1,y_1)) . Какие бы точки на заданной прямой мы не взяли, мы всегда придем к одним и тем же значениям (k) и (b) . Заметим, что из-за дополнительного слагаемого (b) переменные (x) и (y) не пропорциональны друг другу. Поэтому константа (k) называется теперь не коэффициентом пропорциональности, как это было раньше, а угловым коэффициентом. Название это происходит от того, что значение (k) тесно связано с углом наклона прямой по отношению к оси (x) . Чем круче идет прямая, тем больше ее угловой коэффициент.

Константу (b) иногда называют свободным членом. Как легко видеть, переменная (y) равна (b) при (x = 0) . Иными словами, (b) — это точка на оси (y) , в которой эта ось пересекается с нашей прямой. Если (b = 0) , то прямая проходит через начало координат, и мы возвращаемся к частному случаю, рассмотренному ранее.

Из наших рассуждений следует, что любая прямая на координатной плоскости может быть описана уравнением вида

при подходящем выборе констант (k) и (b) . Единственным исключением является особый случай, когда в выражении для углового коэффициента (k = frac) знаменатель обращается в ноль. Это происходит, если (x_1 = x_0) . Это значит, что прямая перпендикулярна оси (x) (и соответственно параллельна оси (y) ). При таких обстоятельствах (x) неизбежно утрачивает роль независимой переменной, но может формально рассматриваться как функция от (y) :

(x = 0 cdot (y — y_0) + x_0.)

В совершенно общем виде уравнение прямой можно написать следующим образом:

((x_1-x_0) (y-y_0) = (y_1-y_0) (x-x_0).)

При этом, однако, выбор двух пар параметров ((x_0, y_0)) и ((x_1, y_1)) (которые, по смыслу, являются координатами двух произвольных точек, лежащих на прямой) неоднозначен.

Построение графика по заданной функции

Теперь давайте выясним, как построить график неоднородной линейной функции (y) от (x) , которая определяется как

где (k) и (b) — любые действительные числа. Как мы только что выяснили, к такому виду сводится уравнение произвольной прямой (при условии, что она не параллельна оси (y) ). Строго говоря, это не исключает, что при некоторых значения параметров (k) и (b) график этой функции может отличаться от прямой линии. Давайте убедимся, что этого никогда не происходит. Перепишем данное нам уравнение следующим образом:

Если перейти в новую, штрихованную, систему координат с началом в точке ((0, b)) и с осями (x’) и (y’) , сонаправленными с соответствующими осями старой системы, то в новых координатах уравнение примет вид:

Мы получим тогда не что иное, как уравнение пропорциональной зависимости, которое гарантировано задает прямую линию. Значит, и график неоднородной линейной функции

представляет собой прямую линию при любых значениях параметров (k) и (b) . Но для того, чтобы построить прямую, достаточно знать две ее произвольные точки ((x_0, y_0)) и ((x_1, y_1)) . В качестве (x_0) и (x_1) можно взять, например, соответственно ноль и единицу. Тогда

(y_0 = b) (при (x_0 = 0) ),
(y_1 = k+b,) (при (x_1 = 1) ).

Проводим прямую через точки ((x_0, y_0)) и ((x_1, y_1)) — и задача решена. На практике, впрочем, лучше брать такие точки, которые расположены друг от друга по возможности дальше, насколько позволяет чертеж. Пример графика неоднородной линейной функции со значением параметров (k = frac) и (b = 1) представлен на следующем рисунке.

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Конспект

(1) . Линейная функция (y = k,x + b) называется однородной при (b = 0) и неоднородной при (b ne 0.) Ее график на координатной плоскости представляет собой прямую линию, которая строится по двум произвольным точкам.

(2) . Уравнение прямой, проходящей через начало координат: (y = frac x,) где ((x_1, y_1)) — координаты произвольной точки, принадлежащей этой прямой ((x_1 ne 0).) Исключение: прямая совпадает с осью (y) . Тогда уравнение прямой: (x = 0.)

(3) . Уравнение произвольной прямой: (y-y_0 = frac (x-x_0),) где ((x_0, y_0)) и ((x_1, y_1)) — координаты двух различных произвольных точек, принадлежащих этой прямой. Исключение: прямая проходит через точку ((x_0, y_0)) параллельно оси (y) . Тогда уравнение прямой: (x = x_0) .

Видео:Уравнение прямой, проходящей через начало координатСкачать

Уравнение прямой, проходящей через начало координат

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Вопрос по алгебре:

Составить уравнение прямой,проходящей через начало координат и через точку (-2,3), и построить ее!

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Уравнение прямой, проходящей через две точки − примеры и решения

Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее(1)

Подставив координаты точек A и B в уравнение (1), получим:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее
Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Выразим переменные x, y, z через параметр t :

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее(2)

Подставив координаты точек A и B в уравнение (2), получим:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее
Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Составим параметрическое уравнение прямой:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Выразим переменные x, y, z через параметр t :

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ееНаписать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Написать уравнение прямой проходящей через начало координат и точку а 2 3 и построить ее

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

📸 Видео

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)Скачать

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Составить уравнение прямой, проходящей через две данные точки. Метод координат. Геометрия 9 классСкачать

Составить уравнение прямой, проходящей через две данные точки. Метод координат. Геометрия 9 класс

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.

Видеоурок "Уравнение прямой, проходящей через две точки"Скачать

Видеоурок "Уравнение прямой, проходящей через две точки"
Поделиться или сохранить к себе: