В этой статье собрана информация, необходимая для решения задачи составления уравнения плоскости, проходящей через заданную прямую и заданную точку. После решения этой задачи в общем виде мы приведем развернутые решения примеров на составление уравнения плоскости, которая проходит через заданную прямую и точку.
Навигация по странице.
- Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.
- Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.
- Уравнение плоскости проходящей через точку и прямую
- Уравнение плоскости, проходящей через точку и прямую онлайн
- Предупреждение
- Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения
- 📺 Видео
Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая a и точка , не лежащая на прямой a . Поставим перед собой задачу: получить уравнение плоскости , проходящей через прямую a и точку М3 .
Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.
Напомним две аксиомы:
- через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
- если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.
Из этих утверждений следует, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Таким образом, в поставленной нами задаче через прямую a и точку M3 проходит единственная плоскость , и нам требуется написать уравнение этой плоскости.
Теперь приступим к нахождению уравнения плоскости, проходящей через заданную прямую a и точку .
Если прямая a задана через указание координат двух различных точек М1 и М2 , лежащих на ней, то наша задача сводится к нахождению уравнения плоскости, проходящей через три заданные точки М1 , М2 и М3 .
Если же прямая a задана иначе, то нам сначала придется найти координаты двух точек М1 и М2 , лежащих на прямой a , а уже после этого записать уравнение плоскости, проходящей через три точки М1 , М2 и М3 , которое и будет искомым уравнением плоскости, проходящей через прямую a и точку М3 .
Разберемся, как найти координаты двух различных точек М1 и М2 , лежащих на заданной прямой a .
В прямоугольной системе координат в пространстве любой прямой линии соответствуют некоторые уравнения прямой в пространстве. Будем считать, что способ задания прямой a в условии задачи позволяет получить ее параметрические уравнения прямой в пространстве вида . Тогда, приняв , имеем точку , лежащую на прямой a . Придав параметру отличное от нуля действительное значение, из параметрических уравнений прямой a мы сможем вычислить координаты точки М2 , также лежащей на прямой a и отличной от точки М1 .
После этого нам останется лишь написать уравнение плоскости, проходящей через три различных и не лежащих на одной прямой точки и , в виде .
Итак, мы получили уравнение плоскости, проходящей через заданную прямую a и заданную точку М3 , не лежащую на прямой a .
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.
Покажем решения нескольких примеров, в которых разберем рассмотренный метод нахождения уравнения плоскости, проходящей через заданную прямую и заданную точку.
Начнем с самого простого случая.
Напишите общее уравнение плоскости, которая проходит через координатную прямую Ox и точку .
Возьмем на координатной прямой Ox две различные точки, например, и .
Теперь получим уравнение плоскости, проходящей через три точки М1 , М2 и М3 :
Это уравнение является искомым общим уравнением плоскости, проходящей через заданную прямую Ox и точку .
.
Если известно, что плоскость проходит через заданную точку и заданную прямую, и требуется написать уравнение плоскости в отрезках или нормальное уравнение плоскости, то следует сначала получить общее уравнение заданной плоскости, а от него переходить к уравнению плоскости требуемого вида.
Составьте нормальное уравнение плоскости, которая проходит через прямую и точку .
Сначала напишем общее уравнение заданной плоскости. Для этого найдем координаты двух различных точек, лежащих на прямой . Параметрические уравнения этой прямой имеют вид . Пусть точка М1 соответствует значению , а точка М2 — . Вычисляем координаты точек М1 и М2 :
Теперь мы можем составить общее уравнение прямой, проходящей через точку и прямую :
Осталось получить требуемый вид уравнения плоскости, умножив обе части полученного уравнения на нормирующий множитель .
.
Итак, нахождение уравнения плоскости, проходящей через заданную точку и заданную прямую, упирается в нахождение координат двух различных точек, лежащих на заданной прямой. В этом часто состоит основная сложность при решении подобных задач. В заключении разберем решение примера на составление уравнения плоскости, проходящей через заданную точку и прямую, которую определяют уравнения двух пересекающихся плоскостей.
В прямоугольной системе координат Oxyz задана точка и прямая a , которая является линией пересечения двух плоскостей и . Напишите уравнение плоскости, проходящей через прямую a и точку М3 .
Отталкиваясь от заданных уравнений двух пересекающихся плоскостей и , получим параметрические уравнения прямой a , чтобы найти координаты двух точек М1 и М2 , лежащих на прямой a . После этого напишем требуемое уравнение плоскости, проходящей через точку М3 и прямую a , как уравнение плоскости, проходящей через три точки М1 , М2 и М3 .
Процесс перехода от уравнений двух плоскостей, пересекающихся по прямой a , к параметрическим уравнениям прямой a подробно описан в статье уравнения прямой – уравнения двух пересекающихся плоскостей. Не будем на этом подробно останавливаться, а запишем лишь итоговый результат . При получаем точку , при — точку .
Таким образом, уравнение плоскости, проходящей через точку и прямую , имеет вид
.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Уравнение плоскости проходящей через точку и прямую
Плоскость, проходящая через данную точку М0(х0;у0;z0) и через данную прямую K (плоскость проходит через прямую):
и не проходящую через точку М0, представляется уравнением (1):
Эта запись в векторной форме (2):
(r−r0)(r1−r0)а = 0
Уравнение (1) или (2) выражает компланарность векторов а
и $overrightarrow <M> $, $overrightarrow <> $
Примечание
Если прямая K проходит через точку М0, то уравнение (1) становится тождеством и, следовательно, задача имеет бесчисленное множество решений.
Пример
Плоскость, проходящая через точку М0(5;2;3) и прямую
Видео:2. Уравнение плоскости примеры решения задач #1Скачать
Уравнение плоскости, проходящей через точку и прямую онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Написать канонические и параметрические уравнения прямой в пространствеСкачать
Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:
. | (1) |
Задача заключается в построении уравнения плоскости α, проходящей через точку M0 и и через прямую L(Рис.1).
Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (2) |
Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:
A(x−x1)+B(y−y1)+C(z−z1)=0. | (3) |
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:
Вычитая уравнение (3) из уравнения (2), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (5) |
Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M0 и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:
. | (6) |
Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.
Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.
(7) |
Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).
Вычитая уравнение (3) из уравнения (2), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (8) |
Направляющий вектор прямой L имеет следующий вид:
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:
(10) |
(11) |
Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:
(12) |
Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:
Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:
(13) |
Упростим уравнение (13):
(14) |
Ответ: Уравнение плоскости, проходящей через точку M0(1, 2, 5) и через прямую (7) имеет вид (14).
Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и через прямую L, заданной параметрическим уравнением:
(15) |
Решение. Приведем параметрическое уравнение (15) к каноническому виду:
(16) |
Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (17) |
Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:
A(x−x1)+B(y−y1)+C(z−z1)=0. | (18) |
Вычитая уравнение (18) из уравнения (17), получим:
A(x1−x0)+B(y1−y0)+C(z1−z0)=0. | (19) |
Направляющий вектор прямой L имеет следующий вид:
Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :
Am+Bp+Cl=0. | (20) |
(21) |
(22) |
Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:
(23) |
Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:
Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:
(24) |
Упростим уравнение (24):
(25) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.
(26) |
Ответ: Уравнение плоскости, проходящей через точку M0(4, 3, −6) и через прямую (16) имеет вид (26).
📺 Видео
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.Скачать
4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
12. Уравнения прямой в пространстве Решение задачСкачать
Видеоурок "Канонические уравнения прямой"Скачать
Найти точку пересечения прямой и плоскостиСкачать
Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Лекция 23. Виды уравнений прямой на плоскости.Скачать
3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать
Уравнение плоскости через 3 точкиСкачать
Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать