Здесь мы рассмотрим методы решения обыкновенных дифференциальных уравнений. Это уравнения, зависящие от одной независимой переменной, зависимой переменной, и ее производных:
.
Основные определения, относящиеся к дифференциальным уравнениям, изложены на странице Основные понятия и определения дифференциальных уравнений.
Мы считаем, что уравнения имеют решения в области задания переменных; Функции, заданные неявно можно разрешить относительно одной из переменной. Мы не проводим исследования этих и подобных вопросов. Здесь мы рассматриваем только методы решения.
Мы часто будем делить, и умножать уравнения на какие-то функции. В таких операциях нужно соблюдать осторожность. От этого могут появляться дополнительные решения, или исчезать имеющиеся. Например, если мы умножим все части уравнения на , то может появиться новое решение . Если мы разделим все части уравнения на , то может исчезнуть решение , если оно имелось в исходном уравнении. То есть, если мы умножаем или делим уравнение на некоторую функцию f , то всегда нужно особо рассматривать случай f = 0 . Здесь мы не будем заострять на этом внимание.
- Дифференциальные уравнения первого порядка
- Дифференциальное уравнение и его интеграл
- Уравнения в дифференциалах
- Уравнения в полных дифференциалах
- Пример
- Интегрирующий множитель
- Уравнения с разделяющимися переменными
- Пример
- Уравнения, приводящиеся к разделяющимся переменным
- Пример
- Однородные уравнения
- Пример
- Уравнения, приводящиеся к однородным
- Пример
- Обобщенные однородные уравнения
- Пример
- Линейные уравнения
- Решение с помощью интегрирующего множителя
- Решение методом Бернулли
- Решение методом Лагранжа
- Дифференциальное уравнение Бернулли
- Пример
- Уравнения, не разрешенные относительно производной
- Дифференциальные уравнения второго и высших порядков
- Уравнения, допускающие понижение порядка
- Уравнения, не содержащие y в явном виде
- Уравнения, не содержащие x в явном виде
- Уравнения, однородные относительно функции и ее производных
- Линейные уравнения с постоянными коэффициентами
- Общие свойства линейных уравнений
- Решение однородного уравнения
- Решение уравнений со специальной неоднородностью
- Решение неоднородных уравнений общего вида
- Уравнение Эйлера
- Виды дифференциальных уравнений
- Дифференциальные уравнения первого порядка
- Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
- Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
- Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
- Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
- Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0
- Дифференциальные уравнения второго порядка
- Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R
- Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R
- Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения, допускающие понижение порядка
- Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )
- Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )
- Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
- Обыкновенные дифференциальные уравнения
- Обыкновенные дифференциальные уравнения
- Основные понятия о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения с разделенными переменными
- Дифференциальные уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные дифференциальные уравнения
- Дифференциальное уравнение Бернулли
- Обыновенное дефференциальное уравнение
- Основные понятия и определения
- Примеры с решением
- Системы обыкновенных дифференциальных уравнений
- Системы дифференциальных уравнений первого порядка
- Системы линейных дифференциальных уравнений с постоянными коэффициентами
- 🔍 Видео
Видео:12. Интегрирующий множитель. Уравнения в полных дифференциалахСкачать
Дифференциальные уравнения первого порядка
Дифференциальное уравнение и его интеграл
Далее, если это особо не оговорено, мы считаем, что x – это независимая переменная, а y – зависимая. То есть y есть функция от x : . Однако, в уравнениях первого порядка, мы можем легко менять роли переменных. То есть можно считать y независимой переменной, а x – зависимой. Но по умолчанию, x – это независимая переменная, а y – зависимая.
Пусть у нас есть дифференциальное уравнение первого порядка, разрешенное относительно производной. Запишем его в следующем виде:
(1) .
Здесь p и q – заданные функции двух переменных.
Далее рассмотрим уравнение:
(2) ,
где φ – некоторая функция двух переменных; C – постоянная, то есть число. Положим, что y есть функция от x : . Тогда будет уже сложной функцией от одной переменной x . Обозначим ее буквой : .
Перепишем уравнение (2), выразив левую часть через переменную x :
(3) .
Дифференцируем это уравнение по x , применяя правило дифференцирования сложной функции:
;
.
Мы получили дифференциальное уравнение первого порядка, имеющее тот же вид, что и уравнение (1). Отсюда следует, что если , то функция , определяемая из уравнения , является решением исходного уравнения (1).
Заметим, что левая часть уравнения является производной от функции :
.
Тогда сама функция является интегралом по отношению к уравнению (1), точнее – к его левой части. По этой причине решение уравнения, записанного в виде , называется интегралом уравнения, а сам процесс решения называется интегрированием дифференциального уравнения.
Уравнения в дифференциалах
Воспользуемся свойством дифференциалов, согласно которому
.
Перепишем уравнение (1) и умножим его на dx :
(1) ;
(4) .
Мы получили уравнение, связывающее дифференциалы переменных x и y . По этой причине такие уравнения называются дифференциальными уравнениями. Такая форма записи называется уравнением в дифференциалах, или дифференциальной формой уравнения. Уравнения (1) и (4) эквивалентны. Можно использовать любую из этих форм.
Пусть
(5) ,
где – некоторая функция двух переменных. Подставим в (4):
(6) .
Отсюда видно, что левая часть уравнения (6) является дифференциалом функции : . Тогда уравнение (6) можно переписать в виде равенства нулю дифференциала:
.
Отсюда следует, что функция равняется постоянной, которую обозначим буквой C . Тогда общий интеграл уравнения (4), при условии (5), имеет вид:
(7) .
Уравнения в полных дифференциалах
Итак, мы нашли, что если в уравнении
(4) ,
функции p и q являются частными производными
(5)
от некоторой функции φ , то уравнение (4) имеет интеграл
(7) .
Такие уравнения называются дифференциальными уравнениями в полных дифференциалах.
Как правило интеграл уравнения (7) нам не известен, а известно лишь само уравнение, то есть известны функции и . Возникает вопрос, как по известным функциям p и q определить, что левая часть уравнения является полным дифференциалом? Оказывается, что сделать это достаточно просто. Для того, чтобы уравнение было в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие:
(8) .
Доказательство
Зная, что уравнение относится к классу уравнения в полных дифференциалах, мы можем найти функцию , применяя несколько методов. Рассмотрим метод последовательного выделения дифференциала. В этом методе, мы применяем формулы дифференцирования, записанные в дифференциальной форме:
;
;
;
.
Здесь и могут быть любыми функциями от и . Рассмотрим применение этого метода на конкретном примере.
Пример
Дано уравнение:
(П1) .
Требуется проверить, является ли это уравнение в полных дифференциалах. И если является, то решить его.
В нашем случае . Проверим, является ли это уравнение в полных дифференциалах. Находим частные производные.
;
.
Видно, что . То есть это уравнение в полных дифференциалах. Решаем его, последовательно выделяя дифференциал.
.
Итак, мы нашли эквивалентное (П1) уравнение
.
Отсюда получаем его общий интеграл:
.
Решать подобные уравнения можно также и методом последовательного интегрирования. Решение этим методом можно найти на странице Дифференциальные уравнения в полных дифференциалах
Интегрирующий множитель
Итак, мы научились решать дифференциальные уравнения первого порядка
(4)
при условии
(8) .
Но если существует единственное решение уравнения (4), и условие (8) не выполняется, то оказывается, что существует такая функция , умножив на которую уравнение (4), оно становится уравнением в полных дифференциалах. Причем существует бесконечное множество таких функций. Доказательство
В качестве примера рассмотрим уравнение:
(П2) .
Перепишем его, сгруппировав члены:
.
Заметим, что . Поэтому разделим уравнение на , чтобы выделить полный дифференциал . При имеем:
.
Выделяем полный дифференциал:
;
.
Отсюда получаем общий интеграл исходного уравнения:
.
В уравнении (П2), интегрирующий множитель равен . Когда мы умножили на него уравнение, то оно стало уравнением в полных дифференциалах, которое мы и решили.
Заметим, что при умножении уравнения на множитель , мы получили другое уравнение. Оно эквивалентно исходному за исключением точек, в которых и . Уравнение корней не имеет. Поэтому этот случай отпадает. А уравнение имеет корень :
.
Поэтому умножение уравнения на множитель дает эквивалентное уравнение, за исключением точек . Другими словами, поскольку мы разделили уравнение на , то нужно проверить случай . Подстановкой в (П2) убеждаемся, что также является решением исходного уравнения. Поэтому общее решение имеет вид:
; .
В этом примере мы угадали, что если уравнение умножить на , то можно выделить полный дифференциал. Не смотря на то, что для любого уравнения, при условии существования его решения, интегрирующий множитель существует, у нас нет общего метода, который позволяет найти его для любого дифференциального уравнения. Можно попытаться это сделать, но для произвольного уравнения нет гарантии, что мы найдем интегрирующий множитель, и решим уравнение. К счастью есть несколько классов уравнений, для которых это сделать можно. Эти типы уравнений мы и рассмотрим.
Уравнения с разделяющимися переменными
Рассмотрим уравнение
(9) ,
где – некоторые заданные функции. Перепишем это уравнение в дифференциалах:
.
Разделим его на . При имеем:
(11) .
Уравнение имеет вид суммы, каждое слагаемое которой зависит только от одной переменной. Говорят, что переменные разделились, а уравнение (9), по этой причине, называют дифференциальным уравнением с разделяющимися переменными.
Нетрудно видеть, что уравнение (11) в полных дифференциалах. Действительно, поскольку множитель при dx не зависит от y , то . Поскольку множитель при dy не зависит от x , то .
Видно, что необходимое и достаточное условие для полных дифференциалов выполняется:
.
Таким образом мы нашли интегрирующий множитель: . Это позволяет нам выделить дифференциал и получить решение в квадратурах:
;
;
.
Отсюда получаем общий интеграл:
.
Пример
Решить уравнение:
(П3) .
Перепишем (П3) в дифференциалах:
.
Разделим на . При имеем:
.
Переменные разделились. Общий интеграл имеет вид:
.
Далее, см. Дифференциальные уравнения с разделяющимися переменными
Уравнения, приводящиеся к разделяющимся переменным
К уравнению с разделяющимися переменными приводятся уравнения вида
,
где f – функция; a, b, c – постоянные. Для решения подобного уравнения нужно от переменной y перейти к новой переменной u , сделав подстановку .
Пример
Решить уравнение:
(П4.1)
От переменной y перейдем к переменной u . Делаем подстановку:
(П4.2) .
Здесь и – функции от x . Дифференцируем (П4.2) по x , и подставляем (П4.1):
;
.
Тем самым мы получили дифференциальное уравнение с разделяющимися переменными.
См. далее Дифференциальные уравнения, приводящиеся к уравнениям с разделяющимися переменными
Однородные уравнения
Однородные дифференциальные уравнения первого порядка имеют вид
.
Чтобы определить, является ли уравнение однородным, нужно сделать замену . Здесь t – постоянная. Если t сократится, то это однородное уравнение. Для его решения нужно от переменной y перейти к переменной u , сделав подстановку . После этого, уравнение сводится к уравнению с разделяющимися переменными.
Пример
Проверим, является ли это уравнение однородным. Сделаем замену . Считаем, что постоянная :
;
;
.
Постоянная t сократилась. Она также сократится, если считать . Это однородное уравнение. Переходим от переменной y к переменной u . Для этого делаем подстановку , где u – функция от x . Дифференцируем по x :
.
Подставляем в(П5):
;
;
.
При , берем знак ′+′ . При – знак ′–′ . Мы получили уравнение с разделяющимися переменными, решать которое мы уже умеем.
Далее см. Однородные дифференциальные уравнения первого порядка
Уравнения, приводящиеся к однородным
Уравнение вида
.
приводится к однородному подстановками
,
где – новые переменные; – постоянные, которые выбираются из условий
.
Пример
От переменных x и y , переходим к переменным t и u . Делаем подстановку . Тогда ;
;
;
.
Решаем систему из двух линейных уравнений
Определив и , получаем однородное уравнение:
.
Метод решения такого уравнения мы только что рассмотрели. См. Дифференциальные уравнения первого порядка, приводящиеся к однородным
Обобщенные однородные уравнения
К однородным уравнениям приводятся уравнения вида
.
Чтобы определить, является ли дифференциальное уравнение обобщенным однородным, нужно ввести постоянную t и сделать замену: . Если удастся выбрать такое значение α , при котором постоянная t сократится, то это – обобщенное однородное дифференциальное уравнение. Для решения этого уравнения, нужно от переменной y перейти к переменной u , сделав подстановку . При этом уравнение сводится к разделяющимся переменным.
Пример
Проверим, является ли уравнение (П7) обобщенным однородным. Делаем замену: .
.
Подставляем в (П7):
.
Делим на :
.
Отсюда видно, что t сокращается, если положить .
Итак, мы нашли, что это обобщенное однородное уравнение с . Решаем его. От переменной y переходим к переменной u , выполняя подстановку .
;
;
.
Подставляем в (П7):
(П7) ;
;
;
;
.
Мы получили уравнение с разделяющимися переменными.
См. далее Обобщенные однородные дифференциальные уравнения первого порядка
Линейные уравнения
Дифференциальные уравнения, вида
(11)
называются линейными дифференциальными уравнениями первого порядка.
Решение с помощью интегрирующего множителя
Уравнение (11) имеет интегрирующий множитель .
См. Решение линейных дифференциальных уравнений первого порядка
Продемонстрируем это на примере.
Пример
Это линейное уравнение первого порядка. Решаем его с помощью интегрирующего множителя. Разделим (П8.1) на x :
(П8.2) .
Тогда . Находим интегрирующий множитель :
; .
Пусть . Тогда . Умножаем (П8.2) на и выделяем полный дифференциал:
;
;
;
.
Отсюда , или .
Мы нашли интегрирующий множитель полагая, что . После умножения на него, мы получили уравнение в полных дифференциалах как при , так и при . При решении мы нигде не полагали, что . Это предположение нам потребовалось, только чтобы выбрать интегрирующий множитель. На самом деле, любое уравнение первого порядка имеет бесконечное число интегрирующих множителей. Поэтому, если бы мы в самом начале взяли , то получили бы множитель . И с его помощью, получили то же самое решение.
Решение методом Бернулли
Линейное уравнение первого порядка можно решить красивым приемом, введя две функции и , зависящие от переменной x . Сделаем подстановку . Тогда . Подставим в исходное уравнение (11):
(11) ;
;
(12) .
Наложим условие
(13) .
Уравнение (13) с разделяющимися переменными. Решаем его, и возьмем любое, отличное от нуля частное решение. Так мы определим функцию . Учитывая (13), уравнение (12) примет вид:
.
Теперь здесь уже известная функция, и это уравнение с разделяющимися переменными. Решая его, найдем общее решение . Вместе с этим получаем общее решение исходного уравнения (11): .
Подробнее, см. Решение линейного ДУ первого порядка методом Бернулли
Решение методом Лагранжа
Метод Лагранжа интересен тем, что указывает путь поиска решения от простого к сложному. Рассмотрим линейное уравнение:
(11) .
Давайте его упростим. Сначала рассмотрим однородное уравнение – то есть уравнение с :
(14) .
Это уравнение с разделяющимися переменными, и мы можем его решить:
;
;
;
;
.
Заменим постоянную на C . Тогда общее решение примет вид:
(15) , где .
Теперь вернемся к исходному неоднородному уравнению (11). Попытаемся найти его решение, используя решение более простого, однородного уравнения (14). Для этого в (15) заменим постоянную C на функцию, зависящую от переменной x : . То есть будем искать решение в виде
.
Подставляя в (11), получим для дифференциальное уравнение с разделяющимися переменными, которое решается в квадратурах. Решив его, получаем решение исходного уравнения. Такой метод решения называется методом вариации постоянных, или методом Лагранжа.
См. Решение линейных ДУ первого порядка методом Лагранжа
Дифференциальное уравнение Бернулли
Дифференциальное уравнение Бернулли имеет вид:
,
где и – заданные функции от x . Можно убедиться, что оно сводится к линейному уравнению подстановкой .
См. Дифференциальное уравнение Бернулли и методы его решения
Однако его легче решать методом двух функций Бернулли. Для этого вводим две функции и . Ищем решение в виде . Одну из этих функций выбираем так, чтобы уравнение для другой функции превратилось в уравнение с разделяющимися переменными.
Пример
Это уравнение Бернулли. Решаем методом Бернулли. Ищем решение в виде произведения двух функций: . Тогда
. Подставляем в (П9.1):
;
(П9.2) .
Одну из этих функций мы можем выбрать произвольным образом. Выберем v так, чтобы выражение в круглых скобках равнялось нулю:
(П9.3) .
Тогда уравнение (П9.2) превратится в уравнение с разделяющимися переменными.
Решаем уравнение (П9.3). Разделяем переменные.
;
;
;
;
.
Возьмем решение , или .
Подставим в (П9.2), учитывая (П9.3), и разделяем переменные:
(П9.2) ;
;
;
.
При имеем:
;
;
;
;
;
.
Заменим постоянную интегрирования: . Тогда решение уравнения (П9.1) примет вид:
.
Теперь рассмотрим случай . Нетрудно увидеть, что это также решение уравнения (П9.2). Тогда является решением исходного уравнения. Получаем общее решение исходного уравнения:
.
Уравнения, не разрешенные относительно производной
Существует несколько типов уравнений, не разрешенных относительно производной, которые допускают решение. При этом они должны быть разрешены относительно одной из переменной. Далее перечислены типы этих уравнений, и даны ссылки на страницы с методами их решений.
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Дифференциальные уравнения второго и высших порядков
Уравнения, допускающие понижение порядка
Уравнения, не содержащие y в явном виде
Рассмотрим уравнения вида
.
Если сделать подстановку , то . То есть мы понизили на единицу порядок такого уравнения.
См. Дифференциальные уравнения, не содержащие функцию в явном виде
Уравнения, не содержащие x в явном виде
Рассмотрим уравнения, которые не содержат независимую переменную x в явном виде:
.
Мы можем понизить порядок таких уравнений, если от переменных x и y перейдем к независимой переменной y и зависимой переменной y′ . То есть, считаем, что все производные являются функциями от y .
Пример
Это уравнение не содержит независимую переменную x в явном виде. Переходим к новым переменным. Пусть независимой переменной является y , а зависимой y′ . Введем для нее обозначение:
. Тогда по правилу дифференцирования сложной функции, имеем:
.
Подставляем в (П10.1):
.
Мы получили дифференциальное уравнение первого порядка с разделяющимися переменными.
Далее, см. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде
Уравнения, однородные относительно функции и ее производных
Это уравнения вида
.
Чтобы распознать такое уравнение, нужно сделать замены , и т.д. Если постоянная t сократится, то это уравнение однородное относительно функции и ее производных.
Для решения, мы от зависимой переменной y переходим к новой зависимой переменной u с помощью подстановки
,
где – функция от x .
Пример
Проверим, является ли это уравнение однородным относительно функции и ее производных. Заменим в исходном уравнении y на ty , y′ на ty′ , y′′ на ty′′ :
;
.
Постоянная t сокращается. Значит это уравнение однородное относительно функции и ее производных.
Делаем подстановку , где – функция от x .
.
(П11.1) ;
.
Делим на . При имеем:
;
;
.
Мы получили линейное дифференциальное уравнение первого порядка. См. далее ДУ высших порядков, однородные относительно функции и ее производных
Линейные уравнения с постоянными коэффициентами
В линейных уравнениях с постоянными коэффициентами, допускающими решение в аналитическом виде, можно сделать линейную подстановку, и понизить порядок уравнения. Однако проще воспользоваться свойствами линейных уравнений и решать их более простым методом.
Общие свойства линейных уравнений
Рассмотрим линейное однородное дифференциальное уравнение n-го порядка с постоянными коэффициентами:
(Л1) ,
где – постоянные, то есть не зависящие от переменной x коэффициенты (числа). При этом . Это уравнение имеет n линейно независимых решений:
(Л2) .
Они называются фундаментальной системой решений. Когда n линейно независимых решений найдены, то общее решение однородного уравнения (Л1) имеет вид:
.
Теперь рассмотрим более общее – линейное неоднородное дифференциальное уравнение n-го порядка с постоянными коэффициентами:
(Л3) ,
где – непрерывная функция на некотором отрезке . Тогда, на этом отрезке, уравнение (Л3) имеет решение, удовлетворяющее заданным начальным условиям:
, где – любые действительные числа; .
Пусть есть частное (любое) решение уравнения (Л3). Тогда общее решение неоднородного уравнения (Л3) равно сумме частного решения неоднородного уравнения, и общего решения однородного:
,
где – общее решение однородного уравнения (Л1).
Если, в уравнении (Л3), неоднородную часть можно представить в виде суммы p слагаемых:
,
то частное решение равно сумме отдельных частных решений: . Здесь – частное решение уравнения
.
Решение однородного уравнения
Рассмотрим линейное однородное ДУ n-го порядка с постоянными коэффициентами:
(Л1) .
Чтобы найти его общее решение, нам нужно найти n линейно независимых решений. Или, как говорят, найти фундаментальную систему решений. Ищем решение в виде . Подставляя в (Л1), получаем уравнение степени n, которое называют характеристическим уравнением:
(Л4) .
Оно имеет n корней , и может быть записано в виде:
.
Каждому корню соответствует частное решение, входящее в состав фундаментальной системы. При этом корни могут быть кратными и комплексными. Рассмотрим правила составления линейно независимых решений.
Действительному единственному корню соответствует решение .
Действительному корню кратности p , соответствуют p линейно независимых решений:
.
Если есть единственный комплексный корень , то имеется и комплексно сопряженный корень . Им соответствуют два линейно независимых решения
.
Если есть кратный комплексный корень кратности p , то имеется и комплексно сопряженный корень, кратности p : . Им соответствуют 2 p линейно независимых решений
;
;
;
.
.
Пример
Ищем решение в виде . Составляем характеристическое уравнение и преобразуем его:
;
(П12.2) .
Решаем квадратное уравнение :
.
Перепишем характеристическое уравнение (П12.2) в эквивалентном виде:
.
Корням кратности 2 соответствуют два линейно независимых решения:
;
.
Комплексно сопряженным корням , соответствуют решения
.
Общее решение:
.
Решение уравнений со специальной неоднородностью
Рассмотрим, часто встречающееся в приложениях, линейное неоднородное уравнение с постоянными коэффициентами со специальной неоднородностью:
(Л5.1) ,
где правая часть представлена в виде произведений степенной функции, экспоненты, косинусов и синусов:
(Л5.2) .
Здесь – многочлены степеней и , соответственно.
Общее решение (Л5.1) – (Л5.2) имеет вид:
.
Здесь – общее решение однородного уравнения (с ); – частное решение неоднородного уравнения (Л5.1)–(Л5.2). Как найти общее решение , мы рассмотрели в предыдущем пункте. Изложим метод нахождения частного решения.
Ищем методом неопределенных коэффициентов. Известно, что для уравнения (Л5.1) – (Л5.2), частное решение имеет следующий вид:
(Л6) .
Здесь ; и – многочлены степени s . Если среди корней характеристического уравнения (Л4) ⇑ нет корня , то . Если такой корень есть, то m – его кратность.
Метод нахождения частного решения заключается в том, что мы ищем решение в виде (Л6). Для этого записываем многочлены в общем виде:
;
.
Здесь коэффициенты (числа), которые нужно определить. Далее мы выписываем (Л6) в общем виде:
.
Находим n производных , и подставляем их выражения в исходное уравнение (Л5.1) – (Л5.2). В левой части мы получим сумму из членов с множителями , и членов с множителями . Здесь . В правой, неоднородной части, также имеется членов с множителями , и членов с множителями . При этом часть из них может равняться нулю. Приравнивая коэффициенты при этих множителях, получим систему из уравнений, решая которую, мы определяем неизвестные коэффициенты .
Если , то правая часть имеет более простой вид:
(Л5.3) .
Тогда частное решение содержит неопределенных коэффициентов:
.
Здесь , если характеристическое уравнение (Л4) ⇑ не имеет действительного корня . Если характеристическое уравнение имеет действительный корень , то m – его кратность.
Далее находим выражения для n производных , и подставляем их в исходное уравнение (Л4.1) – (Л4.2). В левой части мы получим сумму из членов с множителями . В правой, неоднородной части, также имеется членов с множителями . Часть из них может равняться нулю. Приравнивая коэффициенты при этих множителях, получим систему из уравнений, решая которую, мы определяем неизвестные коэффициенты .
Наконец, если и , и , то
(Л5.4) .
Частное решение, как и в предыдущем случае, имеет неопределенных коэффициентов:
.
Если характеристическое уравнение не имеет действительного корня , то . Если характеристическое уравнение имеет такой корень, то m – его кратность. Находим выражения для n производных ; подставляем их в исходное уравнение (Л4.1) – (Л4.2). В левой части мы получим сумму из членов с множителями . В правой, неоднородной части, также имеется членов с множителями . Часть из них может равняться нулю. Приравнивая коэффициенты при этих множителях, получим систему из уравнений, решая которую, определяем неизвестные коэффициенты .
Решение неоднородных уравнений общего вида
Теперь рассмотрим методы решения линейного неоднородного ДУ n-го порядка с постоянными коэффициентами с неоднородностью общего вида:
(Л3) .
В отличие от предыдущего случая со специальной неоднородностью, в этом разделе мы считаем, что неоднородность имеет произвольный вид.
Решение методом Бернулли
Метод Бернулли заключается в том, что мы ищем решение уравнения
(Л3)
в виде произведения двух функций и , зависящих от переменной x :
.
Если в качестве v взять частное решение однородного уравнения
,
то такая подстановка приводит к понижению порядка исходного уравнения (Л3).
Пример
Ищем решение в виде произведения двух функций; подставляем в уравнение (П13.1) и группируем члены:
(П13.2) ;
;
.
(П13.1) ;
;
(П13.3) ;
Решаем однородное уравнение
(П13.4) .
Ищем решение в виде . Составляем и решаем характеристическое уравнение:
;
.
Получаем два кратных корня . Общее решение уравнения (П13.4):
.
В качестве v мы можем взять любое, отличное от нуля решение. Поэтому положим
. Тогда ; .
Понижение порядка линейной подстановкой
Порядок линейного уравнения с постоянными коэффициентами можно понизить с помощью подстановки . Более подробно этот материал изложен на странице «Понижение порядка в линейных неоднородных ДУ с постоянными коэффициентами». Здесь мы рассмотрим пример применения этого метода.
Пример
Решить уравнение, применяя линейную подстановку
(П14.1)
Перепишем левую часть уравнения (П14.1), введя оператор дифференцирования :
.
Подставим в (П14.1). Исходное уравнение принимает вид
.
Сделаем подстановку . В результате для переменной u получаем уравнение первого порядка:
;
.
Итак, подстановкой
(П14.2) ,
мы получили уравнение первого порядка:
(П14.3) .
Решаем уравнение (П14.3), умножая его на интегрирующий множитель :
;
;
;
;
.
Подставляем в уравнение (П14.2) и решаем его с помощью интегрирующего множителя .
;
;
;
;
;
.
Метод вариации постоянных Лагранжа
Выпишем еще раз линейное неоднородного ДУ n-го порядка с постоянными коэффициентами:
(Л3) .
Метод вариации постоянных, который мы применили для уравнения первого поряддка, также применим и для уравнений произвольного порядка.
Для решения уравнения (Л3), мы вначале решаем однородное уравнение
.
Получаем его общее решение, которое имеет вид:
(Л7) .
Далее мы считаем, что постоянные являются функциями от x . То есть заменяем постоянные на некоторые, пока не известные, функции . Подставляем в (Л7), и ищем решение исходного уравнения (Л3) в следующем виде:
(Л8) .
Подставляем (Л8) в (Л3). При этом на функции накладываем дополнительные ограничения:
.
В результате получаем систему n линейных уравнений относительно неизвестных . Решая эту систему, получаем значения производных , как функций от x . Интегрируя, получаем выражения для самих функций . Подставляя в (Л8), получаем общее решение исходного уравнения (Л3).
Уравнение Эйлера
Уравнение
(Л9)
называется дифференциальным уравнением Эйлера. Подстановкой
(Л10)
оно приводится к уравнению с постоянными коэффициентами.
В некоторых случаях, уравнение Эйлера проще решать напрямую, не прибегая к подстановке (Л10). При решении неоднородного уравнения, к уравнению Эйлера применимы методы двух функций Бернулли, и метод вариации постоянных Лагранжа.
Рассмотрим однородное уравнение Эйлера:
(Л11) .
Его тоже проще решить без подстановки (Л10). Для этого мы ищем решение в виде . Находим производные, и подставляем в уравнение (Л11). В результате получаем характеристическое уравнение степени n . Оно имеет n корней.
Действительному корню , кратности p , соответствуют p линейно независимых решений
;
.
Если есть комплексный корень кратности p , то есть и комплексно сопряженный корень кратности p . Им соответствуют линейно независимых решений
;
;
.
.
Определив фундаментальную систему решений , получаем общее решение однородного уравнения (Л11):
.
Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Л.Э. Эльсгольц, Дифференциальные уравнения и вариационное исчисление, М., 1969.
Автор: Олег Одинцов . Опубликовано: 31-05-2020
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Виды дифференциальных уравнений
Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.
В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.
Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.
Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.
Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».
Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1 -го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2 -го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.
Напомним, что y ‘ = d x d y , если y является функцией аргумента x .
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Дифференциальные уравнения первого порядка
Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
Начнем с примеров таких уравнений.
y ‘ = 0 , y ‘ = x + e x — 1 , y ‘ = 2 x x 2 — 7 3
Оптимальным для решения дифференциальных уравнений f ( x ) · y ‘ = g ( x ) является метод деления обеих частей на f ( x ) . Решение относительно производной позволяет нам прийти к уравнению вида y ‘ = g ( x ) f ( x ) . Оно является эквивалентом исходного уравнения при f ( x ) ≠ 0 .
Приведем примеры подобных дифференциальных уравнений:
e x · y ‘ = 2 x + 1 , ( x + 2 ) · y ‘ = 1
Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х , при которых функции f ( x ) и g ( x ) одновременно обращаются в 0 . В качестве дополнительного решения в уравнениях f ( x ) · y ‘ = g ( x ) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х .
Наличие дополнительных решений возможно для дифференциальных уравнений x · y ‘ = sin x , ( x 2 — x ) · y ‘ = ln ( 2 x 2 — 1 )
Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1 -го порядка».
Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f ( y ) d y = g ( x ) d x . Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у , разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.
Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x
К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:
y 2 3 d y = sin x d x , e y d y = ( x + sin 2 x ) d x
Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f 2 ( y ) ⋅ g 1 ( x ) . Так мы придем к уравнению f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x . Преобразование можно будет считать эквивалентным в том случае, если одновременно f 2 ( y ) ≠ 0 и g 1 ( x ) ≠ 0 . Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.
В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: d y d x = y · ( x 2 + e x ) , ( y 2 + a r c cos y ) · sin x · y ‘ = cos x y .
К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = a x + b y . Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y ‘ = f ( a x + b y ) , a , b ∈ R .
Подставив z = 2 x + 3 y в уравнение y ‘ = 1 e 2 x + 3 y получаем d z d x = 3 + 2 e z e z .
Заменив z = x y или z = y x в выражениях y ‘ = f x y или y ‘ = f y x , мы переходим к уравнениям с разделяющимися переменными.
Если произвести замену z = y x в исходном уравнении y ‘ = y x · ln y x + 1 , получаем x · d z d x = z · ln z .
В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.
Предположим, что в условии задачи нам дано уравнение y ‘ = y 2 — x 2 2 x y . Нам необходимо привести его к виду y ‘ = f x y или y ‘ = f y x . Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x 2 или y 2 .
Нам дано уравнение y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R .
Для того, чтобы привести исходное уравнение к виду y ‘ = f x y или y ‘ = f y x , нам необходимо ввести новые переменные u = x — x 1 v = y — y 1 , где ( x 1 ; y 1 ) является решением системы уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0
Введение новых переменных u = x — 1 v = y — 2 в исходное уравнение y ‘ = 5 x — y — 3 3 x + 2 y — 7 позволяет нам получить уравнение вида d v d u = 5 u — v 3 u + 2 v .
Теперь выполним деление числителя и знаменателя правой части уравнения на u . Также примем, что z = u v . Получаем дифференциальное уравнение с разделяющимися переменными u · d z d u = 5 — 4 z — 2 z 2 3 + 2 z .
Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».
Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
Приведем примеры таких уравнений.
К числу линейных неоднородных дифференциальных уравнений 1 -го порядка относятся:
y ‘ — 2 x y 1 + x 2 = 1 + x 2 ; y ‘ — x y = — ( 1 + x ) e — x
Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y ( x ) = u ( x ) v ( x ) . Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».
Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
Приведем примеры подобных уравнений.
К числу дифференциальных уравнений Бернулли можно отнести:
y ‘ + x y = ( 1 + x ) e — x y 2 3 ; y ‘ + y x 2 + 1 = a r c t g x x 2 + 1 · y 2
Для решения уравнений этого вида можно применить метод подстановки z = y 1 — a , которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1 -го порядка. Также применим метод представления функции у в качестве y ( x ) = u ( x ) v ( x ) .
Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.
Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0
Если для любых значений x и y выполняется ∂ P ( x , y ) ∂ y = ∂ Q ( x , y ) ∂ x , то этого условия необходимо и достаточно, чтобы выражение P ( x , y ) d x + Q ( x , y ) d y представляло собой полный дифференциал некоторой функции U ( x , y ) = 0 , то есть, d U ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y . Таким образом, задача сводится к восстановлению функции U ( x , y ) = 0 по ее полному дифференциалу.
Выражение, расположенное в левой части записи уравнения ( x 2 — y 2 ) d x — 2 x y d y = 0 представляет собой полный дифференциал функции x 3 3 — x y 2 + C = 0
Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Дифференциальные уравнения второго порядка
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R
Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k 2 + p k + q = 0 . Здесь возможны три варианта в зависимости от различных p и q :
- действительные и различающиеся корни характеристического уравнения k 1 ≠ k 2 , k 1 , k 2 ∈ R ;
- действительные и совпадающие k 1 = k 2 = k , k ∈ R ;
- комплексно сопряженные k 1 = α + i · β , k 2 = α — i · β .
Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:
- y = C 1 e k 1 x + C 2 e k 2 x ;
- y = C 1 e k x + C 2 x e k x ;
- y = e a · x · ( C 1 cos β x + C 2 sin β x ) .
Пример 13
Предположим, что у нас есть линейное однородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами y ‘ ‘ + 3 y ‘ = 0 . Найдем корни характеристического уравнения k 2 + 3 k = 0 . Это действительные и различные k 1 = — 3 и k 2 = 0 . Это значит, что общее решение исходного уравнения будет иметь вид:
y = C 1 e k 1 x + C 2 e k 2 x ⇔ y = C 1 e — 3 x + C 2 e 0 x ⇔ y = C 1 e — 3 x + C 2
Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2 -го порядка с постоянными коэффициентами».
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R
Основным способом решение уравнений данного вида является нахождение суммы общего решения y 0 , которое соответствует линейному однородному дифференциальному уравнению y ‘ ‘ + p y ‘ + q y = 0 , и частного решения y
исходного уравнения. Получаем: y = y 0 + y
Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y
мы можем методом неопределенных коэффициентов при определенном виде функции f ( x ) , которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.
К числу линейных неоднородных дифференциальных уравнений 2 -го порядка с постоянными коэффициентами относятся:
y ‘ ‘ — 2 y ‘ = ( x 2 + 1 ) e x ; y ‘ ‘ + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x
Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2 -го порядка с постоянными коэффициентами».
Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.
На некотором отрезке [ a ; b ] общее решение линейного однородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 представлено линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, y = C 1 y 1 + C 2 y 2 .
Частные решения мы можем выбрать из систем независимых функций:
1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 x , e k 2 x , . . . , e k n x 3 ) e k 1 x , x · e k 1 x , . . . , x n 1 · e k 1 x , e k 2 x , x · e k 2 x , . . . , x n 2 · e k 2 x , . . . e k p x , x · e k p x , . . . , x n p · e k p x 4 ) 1 , c h x , s h x
Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.
Возьмем для примера линейное однородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = 0 .
Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y
, где y 0 — общее решение соответствующего ЛОДУ, а y
частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y
нам поможет метод вариации произвольных постоянных.
Возьмем для примера линейное неоднородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = x 2 + 1 .
Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».
Видео:Численное решение задачи Коши методом ЭйлераСкачать
Дифференциальные уравнения высших порядков
Дифференциальные уравнения, допускающие понижение порядка
Мы можем провести замену y ( k ) = p ( x ) для того, чтобы понизить порядок исходного дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , которое не содержит искомой функции и ее производных до k — 1 порядка.
В этом случае y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p ‘ ‘ ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) , и исходное дифференциальное уравнение сведется к F 1 ( x , p , p ‘ , . . . , p ( n — k ) ) = 0 . После нахождения его решения p ( x ) останется вернуться к замене y ( k ) = p ( x ) и определить неизвестную функцию y .
Дифференциальное уравнение y ‘ ‘ ‘ x ln ( x ) = y ‘ ‘ после замены y ‘ ‘ = p ( x ) станет уравнением с разделяющимися переменными y ‘ ‘ = p ( x ) , и его порядок с третьего понизится до первого.
В уравнении, которое не содержит аргумента х и имеет вид F ( y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 , порядок может быть заменен на единицу следующим образом: необходимо провести замену d y d x = p ( y ) , где p ( y ( x ) ) будет сложной функцией. Применив правило дифференцирования, получаем:
d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.
Рассмотрим решение уравнения 4 y 3 y ‘ ‘ = y 4 — 1 . Путем замены d y d x = p ( y ) приведем исходное выражение к уравнению с разделяющимися переменными 4 y 3 p d p d y = y 4 — 1 .
Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».
Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )
Решение уравнений данного вида предполагает выполнение следующих простых шагов:
- находим корни характеристического уравнения k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 ;
- записываем общее решение ЛОДУ y 0 в стандартной форме, а общее решение ЛНДУ представляем суммой y = y 0 + y
— частное решение неоднородного дифференциального уравнения.
Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y
целесообразно использовать метод вариации произвольных постоянных.
Линейному неоднородному ДУ с постоянными коэффициентами y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = x cos x + sin x соответствует линейное однородное ДУ y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = 0 .
Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».
Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )
Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y
, где y 0 — общее решение соответствующего ЛОДУ, а y
— частное решение неоднородного дифференциального уравнения.
y 0 представляет собой линейную комбинацию линейно независимых функций y 1 , y 2 , . . . , y n , каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 в тождество. Частные решения y 1 , y 2 , . . . , y n обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.
После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y
Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».
Видео:Дифференциальные уравнения. 11 класс.Скачать
Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.
Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Обыкновенные дифференциальные уравнения
Содержание:
Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Обыкновенные дифференциальные уравнения
При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.
Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.
Основные понятия о дифференциальных уравнениях
Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение
(7.1)
Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.
Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.
Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.
Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.
Например, для дифференциального уравнения
y’- 2 x = 0 (7.2)
решением является функция y = x 2 . Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.
Следует заметить, что y = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.
Дифференциальные уравнения первого порядка
Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную:
F (x, y, y’) = 0. (7.3)
Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.
Если уравнение (7.2) решить относительно у’, то оно будет иметь вид:
y’= f (x, y) или . (7.4)
Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение имеет решениями функции y = Cx, а дифференциальное уравнение — функции где C — произвольное число.
Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.
Определение. Общим решением дифференциального уравнения (7.3) называется функция
у = φ (х, С), (7.5)
которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.
Если функция (7.5) выражается неявно, то есть в виде
Ф (х, у, С) = 0, (7.6)
то (7.6) называется общим интегралом дифференциального уравнения.
Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.
Ф (х, у, С0) называется частным интегралом дифференциального уравнения.
На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или (7.7)
Условие (7.7) называется начальным условием решения.
Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.
Мы видим, что дифференциальное уравнение имеет общее решение y = Cx. Зададим начальное условие . Подставим эти значения в общее решение, получим 6 = 2С, откуда С = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.
Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет
решение, дает теорема Коши.
ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производная определены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.
Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной .
График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение имеет общее решение y = Cx, то ему соответствует семья прямых,
которые проходят через начало координат (рис. 1).
Уравнение имеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).
Если задано начальное условие то это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи
интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).
Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.
Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.
Дифференциальные уравнения с разделенными переменными
Определение. Уравнение вида
f1 (y) dy = f2 (x) dx, (7.8)
где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.
В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части:
.
Понятно, что произвольную постоянную С можно записывать в любой части равенства.
Пример 1. Решить дифференциальное уравнение:
, удовлетворяющее начальному условию
Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:
— это общее решение дифференциального уравнения.
Подставляя в общее решение начальное условие, найдем С: 2 = С.
Итак,
является частным решением данного уравнения.
Дифференциальные уравнения с разделяющимися переменными
Определение. Уравнение вида
f1 (x) f2 (y) + g1 (x) g2 (y) = 0 (7.9)
называется дифференциальным уравнением с разделяющимися переменными.
В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:
Интегрируя это уравнение, запишем
.
Получили общий интеграл данного уравнения.
Пример 2. Решить дифференциальное уравнение
x (y + 1) dx – (x 2 + 1) ydy = 0.
Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим
.
Интегрируя, получим
— общий интеграл дифференциального уравнения.
Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.
Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:
Получили общий интеграл дифференциального уравнения.
Используя начальное условие, найдем произвольную постоянную С:
ln 1 + arctg 0 = C, откуда C = 0.
Найденную постоянную подставим в общий интеграл и отыщем частное решение:
откуда
Однородные дифференциальные уравнения
Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие
Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.
Определение. Дифференциальное уравнение
y ‘= f (x, y) (7.10)
называется однородным, если функция f (x, y) однородная нулевого измерения.
Покажем, что это уравнение можно свести к уравнению с разделенными переменными.
Рассмотрим функцию f (tx, ty). Сделаем замену будем иметь:
Тогда уравнение (7.10) запишется в виде (7.11)
В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле
или y = xu, (7.12)
то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.
Из формулы (7.12) найдем y’ = u + xu’ и уравнение примет вид: u + xu’ = φ (u),
то есть , откуда .
После интегрирования получим
Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.
Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить вместо u.
В результате получим решение уравнения в неявном виде.
Пример 1. Найти решение однородного уравнения
Решение. Заменой y = xu сведем заданное уравнение к уравнению
или .
Отделяя переменные, найдем
откуда или , то есть
.
Возвращаясь к переменной y, получим общее решение: .
Линейные дифференциальные уравнения
Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения:
y’ + P (x) y = Q (x). (7.13)
Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2 .
Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.
Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.
Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.
Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14)
где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).
Из равенства y = uv найдем производную y’:
y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение (7.13):
u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).
Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15)
Тогда для отыскания функции u получим уравнение:
u’v = Q (x). (7.16)
Сначала найдем v из уравнения (7.15).
Отделяя переменные, имеем , откуда
Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.
Зная v, находим u из уравнения (7.16):
откуда
Здесь мы уже берем для u все первообразные.
Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения:
(7.17)
При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).
Пример 1. Решить дифференциальное уравнение .
Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение: или
. (7.18)
Выражение, стоящее в скобках, приравниваем к нулю, имеем
или
Отделим переменные, домножив обе части уравнения на , тогда .
После интегрирования, получим ln |v| = ln |x| (здесь ограничимся одной первообразной), откуда v = x.
Подставим v = x в уравнение (7.18):
Общее решение запишется:
y = x (x + C) = x 2 + Cx.
Пример 2. Найти частное решение дифференциального уравнения который удовлетворяет начальному условию y (0) = 0.
Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v.
Тогда
Подставим v в уравнение и найдем u:
Общее решение дифференциального уравнения будет:
Подставляем начальные условия в найденное решение и находим С:
Из общего решения получаем частное решение
.
Дифференциальное уравнение Бернулли
Определение. Уравнения вида
(или )
называется дифференциальным уравнением Бернулли.
Данное уравнение отличается от уравнения (7.13) только множителем y» (или x») в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на y»:
Сделаем замену:
Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:
Мы получили линейное дифференциальное уравнение относительно новой переменной
Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.
Решение. .
Сделаем замену Тогда
Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).
Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения
Тогда .
Проинтегрировав правую часть этого уравнения по частям, получим , а при y -1 = z = uv, имеем
Видео:Сеточные методы решения дифференциальных уравнений в частных производных.Скачать
Обыновенное дефференциальное уравнение
Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную искомую функцию и производные искомой функции до некоторого порядка включительно.
Обыкновенное дифференциальное уравнение может быть приведено к виду
Здесь — известная функция, заданная в некоторой области
Число т. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.
Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Основные понятия и определения
Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид
В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:
Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение
используя последнее в окрестности тех точек, в которых обращается в бесконечность.
Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение
Обе переменные и входят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.
Умножая обе части уравнения (3) на некоторую функцию получаем более симметричное уравнение:
где Обратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно или так что уравнение (4) равносильно следующим двум уравнениям:
Иногда уравнение записывают *з так называемой симметрической форме:
Возможно вам будут полезны данные страницы:
Решение уравнения. Предположим, что правая часть уравнения (2), определена на некотором подмножестве вещественной плоскости Функцию определенную в интервале мы будем называть решением уравнения (2) в этом интервале*, если:
- Существует производная для всех значений из интервала (Отсюда следует, что решение представляет собою функцию, непрерывную ею всей области определения).
- Функция обращает уравнение (2) в тождество:
справедливое для всех значений из интервала Это означает, что при любом из интервала точка принадлежит множеству и
Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения этого перевернутого уравнения естественно присоединять к решениям уравнения (2).
В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).
Примеры с решением
Пример 1.
является решением уравнения
в интервале ибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:
справедливое при всех значениях
Пример 2.
Функция есть решение равнения в интервале
Пример 3.
является решением уравнения
в интервале
Иногда функцию обращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Системы обыкновенных дифференциальных уравнений
При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . yn и их производные.
Пример. Пусть материальная точка массы m имеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времени t, когда на нее действует сила .
Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’.
Положим, что сила, а соответственно и ее проекции Fx, Fy, Fz зависят от времени t, от положения x, y, z точки и от скорости движения точки, то есть от . Искомыми неизвестными функциями в этой задаче будут три функции x = x (t), y = y (t), z = z (t). Эти
функции определяются из уравнений динамики:
Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t) и y (t):
Рассмотрим простейшие системы дифференциальных уравнений.
Системы дифференциальных уравнений первого порядка
Система n уравнений первого порядка с n неизвестными функциями имеет вид:
(7.38)
где x — независимая переменная, y1, y2, . yn — неизвестные функции.
Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.
Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.
Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия:
(7.39)
Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):
Заменим производные
их выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение
Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем
Продолжая дальше таким образом, получим
В результате получаем следующую систему уравнений:
(7.40)
Из первых (n-1) уравнений определим y2, y3, . yn:
(7.41)
и подставим их значения в последнее уравнение системы (7.40) для определения y1:
Продифференцируем это выражение (n-1) раз, определим
как функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем
(7.43)
Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.
Пример 1. Проинтегрировать систему
когда заданы начальные условия
Решение. Дифференцируем по x первое уравнение, имеем:
. Подставляем сюда значение и из системы, получим
Из первого уравнения системы найдем и подставим в полученное нами уравнение:
или
Общим решением этого уравнения является
(*)
и тогда (**)
Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем:
1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6.
Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:
Системы линейных дифференциальных уравнений с постоянными коэффициентами
Система дифференциальных уравнений:
(7.44)
где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t) —
неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.
Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.
Будем искать решение системы (7.44) в виде:
(7.45)
Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):
Сократим на e kt и преобразуем систему, сведя ее к такой системе:
(7.46)
Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:
Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:
Это уравнение называется характеристическим уравнением для системы (7.44).
Рассмотрим отдельные случаи на примерах:
1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:
Пример 2. Найти общее решение системы уравнений:
Решение. Составим характеристическое уравнение:
или k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.
Решение системы ищем в виде
Составим систему (7.46) для корня k1 и найдем и :
или
Откуда Положив получим
Итак, мы получили решение системы:
Далее составляем систему (7.46) для k = 4:
Откуда
Получим второй решение системы:
Общее решение системы будет:
2) Корни характеристического уравнения различны, но среди них есть комплексные:
k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:
(7.47)
(7.48)
Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения:
(7.49)
где — действительные числа, которые определяются через .
Соответствующие комбинации функций (7.49) войдут в общий решение системы.
Пример 3. Найти общее решение системы
Решение. Составляем характеристическое уравнение:
или k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .
Подставляем поочередно k1, k2 в систему (7.46), найдем
Запишем уравнение (7.47) и (7.48) для наших данных
Перепишем эти решения в таком виде:
За частные решения можно взять отдельно действительные и отдельно мнимые части:
Общим решением системы будет
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
🔍 Видео
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать
Лекция 4. Численные методы решения обыкновенных дифференциальных уравненийСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать
11. Уравнения в полных дифференциалахСкачать
Метод ЭйлераСкачать