Алгебраическое уравнение 2-й степени иначе называется квадратным. Наиболее общий вид квадратного уравнения с одним неизвестным есть
где a, b, c — данные числа или буквенные выражения, содержащие известные величины (причем коэффициент а не может быть равен нулю, иначе уравнение будет не квадратным, а 1-й степени).. Разделив обе его части на a, мы получим уравнение вида
(p = b/a; q = c/a).
Квадратное уравнение такого вида называется приведенным; уравнение ах 2 + bx + c = 0 (где а ≠ 0), называется неприведенным. Если одна из величин b, с или обе вместе равны нулю, то квадратное уравнение называется неполным; если и b и с не равны нулю, квадратное уравнение называется полным.
Примеры
3x 2 + 8x -5 = 0 – полное неприведенное квадратное уравнение;
3x 2 – 5 = 0 – неполное неприведенное квадратное уравнение;
x 2 – ax = 0 – неполное приведенное квадратное уравнение;
x 2 – 12x +7 = 0 – полное приведенное квадратное уравнение.
Неполное квадратное уравнение вида
x 2 = m (m – известная величина)
является самым простым типом квадратного уравнения и вместе с тем очерь важным, так как к нему приводится решение всякого квадратного уравнения. Решение этого уравнения имеет вид
Возможны три случая:
1) Если m = 0, то и x = 0.
2) Если m – положительное число, то его квадратный корень может иметь два значения: одно положительное, другое отрицательное. Абсолютные величины этих значений одинаковы. Например, уравнение x 2 = 9 удовлетворяется значением х = + 3 и х = — 3. Другими словами, x имеет два значения: +3 и — 3. Часто это выражают тем, что перед радикалом ставят два знака – плюс и минус.
При таком написании подразумевается, что выражение обозначает общую абсолютную величину-двух значений корня; в нашем примере — число 3. Величина может быть иррациональным чиcлом. Заметим, что и само m может быть иррациональным числом. Например, пусть требуется решить уравнение
(геометрически это означает найти длину стороны квадрата равного по площади кругу с радиусом 1). Его корень x = √π.
3) Если m — отрицательное число, то уравнение х 2 = m (например, х 2 = — 9) не может иметь никакого положительного и никакого отрицательного корня: ведь и положительное и отрицательное число по возведении в квадрат дает положительное число. Таким образом, можно сказать, что уравнение х 2 = — 9 не имеет решений, т.е. число не существует.
Но с таким же основанием до введения отрицательных чисел можно было говорить, что и уравнение 2x + 6 = 4 не имеет решений. Однако после введения отрицательных чисел это уравнение стало разрешимым. Точно так же уравнение х 2 = — 9, не имеющее решений среди положительных и отрицательных чисел, становится разрешимым после введения новых величин — квадратных корней из отрицательных чисел. Эти величины были впервые введены итальянским математиком Кардано в середине 16 века в связи с решением кубического уравнения. Кардано назвал эти числа «софистическими» (т. е. «мудреными»). Декарт в 30-х годах 17 века ввел наименование «мнимые числа», которое, к сожалению, удерживается до сих пор. В противоположность мнимым числам прежде известные числа (положительные и отрицательные, в том числе иррациональные) стали называть действительными или вещественными. Сумма действительного и мнимого числа называется комплексным числом*.Часто и комплексные числа называют мнимыми.
Введя в рассмотрение мнимые числа, можно сказать, что неполное квадратное уравнение x 2 = m всегда имеет два корня. Если m > 0, эти корни действительны, они имеют одинаковую абсолютную величину и различны по знаку. Если m = 0, оба они равны нулю; если m *Этот термин введен Гауссом в 1831 г. Слово «комплексный» означает в переводе «совокупный».
Видео:Комплексные корни квадратного уравненияСкачать
Числа. Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.
Рассматривать будем на таком примере:
Если говорить о действительных числах, то, вы знаете, что корень из отрицательного числа нельзя извлекать. Однако в комплексных числах можно. Если конкретнее, 2 корня:
Выполним проверку того, что эти корни и права оказываются решением уравнения:
Что и требовалось доказать.
Зачастую используют сокращенную запись, корни записывают в одну строчку в таком виде: .
Такие корни являются сопряженными комплексными корнями.
Теперь вы знаете как можно извлечь квадратный корень из отрицательного числа. Приведем еще несколько примеров:
, ,
,
,
В каждом случае получаем 2 сопряженных комплексных корня.
Решим квадратное уравнение .
Первым шагом определим дискриминант уравнения:
В нашем случае дискриминант оказался отрицательным, и в случае с действительными числами у уравнения нет решений, но у нас вариант с комплексными числами, поэтому можем продолжать решение:
Как известно из формул дискриминанта у нас образуется 2 корня:
– сопряженные комплексные корни
Т.о., у уравнения есть 2 сопряженных комплексных корня:
,
Теперь можно решить любое квадратное уравнение!
У любого уравнения с многочленом n-ой степени есть ровно n корней, некоторые из них могут быть комплексными.
Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать
Как извлечь корень из произвольного комплексного числа?
Рассмотрим уравнение z n = w, либо, записав в другом виде: . Здесь n может принимать всякое натуральное значение, которое больше 1-цы.
В частности, при n = 2 получаем квадратный корень .
У уравнения типа есть ровно n корней z0, z1, z2, … zn-1, которые можно вычислить с помощью формулы:
,
где – это модуль комплексного числа w,
φ – его аргумент,
а параметр k принимает значения: .
Найдем корни уравнения: .
Перепишем уравнение как: .
В этом примере , , поэтому у уравнения будет 2 корня: z0 и z1. Детализируем общую формулу:
, .
Далее найдем модуль и аргумент комплексного числа :
Число w находится в 1-ой четверти, значит:
Помним, что определяя тригонометрическую форму комплексного числа лучше делать чертеж.
Детализируем еще немного общую формулу:
, .
Так подобно расписывать не обязательно. Здесь мы это сделали, что бы было ясно откуда что образовалось.
Подставляем в формулу значение k = 0 и получаем 1-й корень:
.
Подставляем в формулу значение k = 1 и получаем 2-й корень:
.
Ответ: ,
Если необходимо, корни, которые мы получили можно перевести обратно в алгебраическую форму.
Часто вычисленные корни нужно изобразить геометрически:
Как выполнить чертеж?
Для начала на калькуляторе вычисляем, чему равен модуль корней и чертим с помощью циркуля окружность этого радиуса. Все корни будем откладывать на данной окружности.
Далее берем аргумент 1-го корня и вычисляем, чему равен угол в градусах:
.
Отмеряем транспортиром 45° и ставим на чертеже точку z0.
Берем аргумент 2-го корня и переводим его тоже в градусы: . Отмеряем транспортиром 165° и ставим на чертеже точку z1.
По этому же алгоритму ставим точку z2.
Видно, что корни располагаются геометрически правильно с интервалом между радиус-векторами. Чертеж обязательно делать при помощи транспортира.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Решение квадратного уравнения
Решает квадратное уравнение, в том числе и с мнимыми корнями.
Для решения общего вида квадратного уравнения с одним неизвестным
используется следующая формула
При этом могут представиться следующие три случая
0″ />
тогда два корня уравнения действительны и различны между собой
тогда два корня уравнения действительны и равны между собой
тогда оба корня уравнения мнимы.
Выражение , величина которого позволяет различать эти три случая, называется дискриминантом.
С корнями квадратного уравнения связано интересное свойство — квадратный трехчлен можно разложить на множители первой степени следующим образом
Калькулятор, находящий корни квадратного уравнения:
📹 Видео
Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
8 класс, 25 урок, Формула корней квадратного уравненияСкачать
Откуда взялись ФОРМУЛЫ КОРНЕЙ квадратного уравнения? | МатематикаСкачать
Формула корней квадратного уравнения с четным вторым коэффициентомСкачать
8 класс. Квадратное уравнение и его корни. Алгебра.Скачать
Урок 95 Формулы корней квадратного уравнения (8 класс)Скачать
Как применять формулу корней квадратного уравненияСкачать
MIT App Inventor. Создание приложения для нахождения корней квадратного уравненияСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Решение квадратного уравнения с выводом формулы корнейСкачать
Быстрый способ решения квадратного уравненияСкачать
Извлечение квадратного корня из комплексного числа. 11 класс.Скачать
34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать
Алгебра 8 класс. Ещё одна формула корней квадратного уравненияСкачать
Найти сумму корней квадратного уравнения, если дискриминант равен нулюСкачать