Нахождение корней уравнения методом обратного интерполирования
Обновлено
Поделиться
Обратное интерполирование для равноотстоящих узлов
Задача обратного интерполирования заключается в том, чтобы по функции найти значение аргумента .
Предположим, что монотонна и значение содержится между и . Заменяя интерполяционным полиномом Ньютона, имеем:
ð , где число шагов, необходимых для достижения точки , исходя из точки .
За начальное приближение принимаем:
Применяя метод итерации, получим:
Итерационный процесс, останавливается, когда
и тогда =>
Задано . Определить с точностью
Горизонтальная таблица разностей:
x
y
y
2 y
3 y
Þ
Обратное интерполирование для неравноотстоящих точек
Задача обратного интерполирования для случая неравноотстоящих точек непосредственно может быть решена с помощью интерполяционной формулы Лагранжа
Или с помощью интерполяционной формулы Ньютона для неравноотстоящих точек
Общие выводы по задаче интерполяции
1. Для равноотстоящих узлов интерполирования лучше всего выбирать интерполяционные формулы Ньютона, при этом:
а) если значение в начале таблицы — 1ИФН
б) если значение в конце таблицы — 2ИФН
2. Существуют интерполяционные центральные формулы, позволяющие интерполировать в середине таблицы, используя близлежащие разности (Гаус, Стерлинг, Бессель)
3. Для неравноотстоящих узлов интерполирования существуют формулы Лагранжа, Ньютона.
4. Если количество узлов больше и существует возможность определения хотя бы первых производных в узлах, то лучше всего исрользовать интерполяцию сплайками.
5. Если существует возможность выбора узлов, то выбирают по условиям Чебышева, которое позволяет уменьшить погрешность аппроксимации.
6. Используя интерполяционные формулы, можно решать задачу обратного интерполирования.
7. Задача обратного интерполирования может быть использована при решении корней уравнения, а именно:
, необходимо найти корни. Составляем таблицу по формуле, а затем задаваясь значением => ищат .
Если для функции интерполяционный полином Лагранжа принимает в точках заданные значения . Возникает вопрос, насколько близко построенный полином приближается к функции в других точках, то есть как велик остаточный член.
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Дипломная работа: Сравнительный анализ численных методов
Название: Сравнительный анализ численных методов Раздел: Рефераты по информатике, программированию Тип: дипломная работа Добавлен 17:41:36 12 августа 2009 Похожие работы Просмотров: 1842 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать
Министерство образования и науки Республики Казахстан
Карагандинский Государственный Технический Университет
По дисциплине: ”Математическое обеспечение САПР»
Тема: «Сравнительный анализ численных методов»
1. Постановка задачи
2. Методы решения нелинейных уравнений
2.1 Общие сведения
2.2 Метод касательных (метод Ньютона)
2.2.1 Общие сведения
2.2.2 Решение нелинейного уравнения методом касательных
2.3.1 Общие сведения
2.3.2 Решение нелинейного уравнения методом хорд
2.5 Метод простых итераций
2.5.1 Общие сведения
2.5.2 Решение нелинейного уравнения методом простых итераций
2.6 Программа для решения нелинейных уравнений
3. Решение нелинейных уравнений методом интерполирования
3.2 Многочлен Лагранжа
3.3 Интерполяция сплайнами
3.4 Использование интерполяции на практике
3.4.1 Интерполяция с помощью многочлена Лагранжа
3.4.2 Обратная интерполяция
3.4.3 Интерполяция сплайнами
3.5 Программа для использования интерполяции
4. Итерационные методы решения систем линейных алгебраических уравнений
4.1 Общие сведения
4.2 Метод простой итерации
4.2.1 Описание метода
4.2.2 Решение СЛАУ методом простых итераций
4.2.3 Программа для решения СЛАУ методом простых итераций
4.3 Метод Зейделя
4.3.1 Описание метода
4.3.2 Решение СЛАУ методом Зейделя
4.3.3 Программа дл решения СЛАУ методом Зейделя
4.4 Сравнительный анализ
5. Сравнительный анализ различных методов численного дифференцирования и интегрирования
5.1 Методы численного дифференцирования
5.1.1 Описание метода
5.1.2 Нахождение производной
5.2 Методы численного интегрирования
5.2.1 Общие сведения
5.2.2 Нахождение определенного интеграла
5.3.1 Решение ОДУ методом Эйлера
5.3.2 Решение ОДУ методом Рунге-Кутты
6.Численные методы решения обыкновенных дифференциальных уравнений
6.1 Общие сведения
6.2 Метод Эйлера
Список использованной литературы
Видео:Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать
Введение
На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит главным образом не потому, что мы не умеем этого сделать, а поскольку искомое решение обычно не выражается в привычных для нас элементарных или других известных функциях. Поэтому важное значение приобрели численные методы, особенно в связи с возрастанием роли математических методов в различных областях науки и техники и с появлением высокопроизводительных ЭВМ.
Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами, т.е. к тем действиям, которые выполняет ЭВМ.
В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLABи т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.
Конечно, использование таких программных продуктов значительно сокращает время и ресурсы по решению ряда важных задач. Однако, использование этих программ без тщательного анализа метода, с помощью которого решается задача, нельзя гарантировать, что задача решена правильно. Поэтому для более полного понимания того, как осуществляется расчет различного вида уравнений и их систем, необходимо теоретически изучить методы их решения и на практике их проработать.
Целью выполнения данного курсового проекта является приобретение практических навыков решения нелинейных уравнений, системы линейных алгебраических уравнений, обыкновенных дифференциальных уравнений различными численными методами.
Видео:Алгоритмы. Нахождение корней уравнения методом хордСкачать
1. Постановка задачи
По итерационным методам решения нелинейных уравнений:
Определить корень в заданном или любом выбранном отрезке методом хорд, касательных, простых итераций.
Используя результаты решений, указать наименьший полученный отрезок, в котором содержится корень уравнения.
Для каждого метода и каждой задачи построить график функции на [a,b] и убедиться в выполнении условия сходимости итерационной процедуры.
Используя функции f (x) из п.1, построить интерполяционный многочлен L4 (x) на [a,b], использовав в качестве узловых a иb, остальные необходимые узловые точки выбрать, разделив промежуток [a,b] на почти равные части. Вычислить значения f (x) и L4 (x) в двух точках, одна из которых — середина крайней части, а вторая — середина части, содержащей точку . Сравнить полученные величины. Используя эти же узловые точки, провести обратную интерполяцию и определить значение х при y=0 . Полученный результат сравнить с ранее найденным решением уравнения.
Сравнить результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации.
Провести сравнительный анализ различных методов численного дифференцирования и интегрирования.
Найти численное решение обыкновенного дифференциального уравнения методом Эйлера и уточненным методом Эйлера с 5-ю и 20-ю шагами и сравнить их, если возможно с результатом точного решения ОДУ.
Рассмотрим уравнение вида f (x) =0, (2.1), где f (x) — любая нелинейная функция.
Корнем уравнения ( 2.1) называется значение , при котором. Способы приближенного решения, т.е. алгоритм решения, предполагает определение x * c некоторой наперед заданной точностью.
Для нахождения корней уравнения (2.1) различают следующие два этапа.
Отделения (локализации) корней, т.е. нахождение таких интервалов по аргументу x, внутри каждого из которых существует только один корень уравнения (2.1). Если у функции на концах исследуемого отрезка [a,b] функция имеет разные знаки, то на этом отрезке функция имеет не менее одного корня. Если же одинаковые знаки, то функция может не иметь корней или иметь четное число корней. Следовательно, локализация заключается в том, что необходимо установить отрезки, на которых есть смена знаков функции и, кроме того, выполнено условие единственности корня, т.е. функция на этом отрезке должна иметь первую производную с постоянным знаком. Из условия сходимости итерационной последовательности также требуется, чтобы вторая производная не меняла знак, т.е. на исследуемом отрезке функция бала бы только выпуклой или вогнутой.
Уточнение корней заключается в применении некоторого итерационного метода, в результате которого корень уравнения (2.1) может быть получен с любой наперед заданной точностью ε. При этом, останавливая процесс на какой-либо конечной итерации, необходимо оценить погрешность по сравнению с точным корнем, который неизвестен. Выбранный метод позволяет построить последовательность х1 , х2 , х3 , …, хk , … приближений к корню. Итерационный процесс состоит в последовательном уточнении начального приближения х0. Каждый такой шаг называется итерацией. В результате итераций находится последовательность приближенных значений корня х1, х2, х3, …, хk, … Если эти значения с ростом k стремятся к истинному значению корня , то итерационный процесс сходится.
Основными методами решения нелинейных уравнений, реализованных в виде численной процедуры, являются итерационные методы.
Видео:Определение отметок методом интерполяцииСкачать
2.2 Метод касательных (метод Ньютона)
Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать
2.2.1 Общие сведения
Метод Ньютона, называемый также методом касательных, состоит в следующем. Рассмотрим в точке x0 касательную к кривой y=f (x), задаваемую уравнением
За начальное приближение x0 принимается один из концов отрезка [a, b], где значение функции имеет такой же знак, что и 2-я производная. Функция f (x) должна удовлетворять на отрезке [a, b] следующим условиям:
1) существование производных 1-го и 2-го порядков;
2) f ’ (x) 0;
3) производные 1-го и 2-го порядков знакопостоянны на отрезке [a, b].
Положим y=0, находим точку x1 пересечения касательной с осью абсцисс:
Построив касательную в точке x1 ( рисунок 2.1), получаем по аналогичной формуле точку x2 пересечения этой касательной с осью x и т.д. Формула для n-го приближения имеет вид:
Рисунок 2.1 — Метод касательных
В этом методе на n-й итерации проводится касательная к кривой y =f (x) при х=xn-1 и ищется точка пересечения касательной с точкой абсцисс. При этом необязательно задавать отрезок [a,b], содержащий корень уравнения, а достаточно лишь найти некоторое начальное приближение корня х.
Итерационный процесс останавливают при выполнении условия ; где ε — заданная точность.
2.2.2 Решение нелинейного уравнения методом касательных
1. Дано уравнение tg (0.36*x +0.4) =x 2 . Решить его методом касательных с точностью решения=0,001.
Для нахождения корня исследуем функцию
.
График функции представлен на рисунке 2.2
Рисунок 2.2 — График исследуемой функции
Находим отрезок, в котором функция монотонно возрастает или убывает, а также где концы отрезка будут иметь разные знаки.
Выбираем концы отрезка: a= -1; b = 0. График функции на этом отрезке представлен на рисунке 2.3
Рисунок 2.3 — График функции на выбранном отрезке
Проверяем существование корня на отрезке по условию
x>0.001
x>0.001
,
x 3 -0,2x 2 +0,4x-1,4=0.
Решить его методом касательных с точностью решения=0,001.
Для нахождения корня исследуем функцию
.
График функции представлен на рисунке 2.5
Рисунок 2.5 — График исследуемой функции
Находим отрезок, в котором функция монотонно возрастает или убывает, а также где концы отрезка будут иметь разные знаки.
Выбираем концы отрезка: a= -0.1; b = 1.5 График функции на этом отрезке представлен на рисунке 2.6
Рисунок 2.6 — График функции на выбранном отрезке
Проверяем существование корня на отрезке по условию
-3,066375
Экстремумов на выбранном отрезке нет.
Находим первую производную функции:
;
В точке a первая и вторая производные равны:
,
В точке bпервая и вторая производные равны:
,
Выбираем тот конец отрезка, значение функции в котором совпадает со знаком 2-ой производной.
x0 = 1,5 2.125*6.55=13,91875,
x>0.001
x>0.001
x>0.001
x 2 .
Решить его методом хорд с точностью решения=0,001.
Как в предыдущем методе для нахождения корня исследуем функцию
.
Выбираем концы отрезка: a= -1; b = 0. График функции на этом отрезке представлен на рисунке 2.9
Рисунок 2.9 — График функции на выбранном отрезке
По данным из п.2.2.2 за x0 выбираем тот конец отрезка, который совпадает со знаком 2-ой производной. А за x1 второй конец отрезка.
x>0.001
x>0.001
x>0.001
x>0.001
x>0.001
x 3 -0,2x 2 +0,4x-1,4=0. Решить его методом хорд с точностью решения=0,001.
Как в предыдущем методе для нахождения корня исследуем функцию
.
График функции представлен на рисунке 2.5
Выбираем концы отрезка: a= -0.1; b = 1.5 График функции на этом отрезке представлен на рисунке 2.11
Рисунок 2.11 — График функции на выбранном отрезке.
По данным из п.2.2.2 за x0 выбираем тот конец отрезка, который совпадает со знаком 2-ой производной и удовлетворяет условию . А за x1 второй конец отрезка.
x>0.001
x>0.001
x>0.001
x>0.001
x>0.001
x>0.001
x>0.001
x 0 вычисления следует вести до тех пор, пока не окажется выполненным неравенство
Если величина , то можно использовать более простой критерий окончания итераций:
2.5.2 Решение нелинейного уравнения методом простых итераций
1. Дано уравнение tg (0.36*x +0.4) =x 2 . Решить его методом простых итераций с точностью решения=0,001. Как в предыдущих методах для нахождения корня исследуем функцию
.
Выбираем концы отрезка: a= -1; b = 0. График функции на этом отрезке представлен на рисунке 2.14.
Рисунок 2.14 — График функции на выбранном отрезке
Приведем уравнение к виду x=x-af (x), где итерационная функция (x) =x-af (x),a — итерационный параметр.
Максимальное и минимальное значения производной достигаются на концах отрезка:
Применяем формулу x=x — af (x) =f (x):
2. Дано уравнение x 3 -0,2x 2 +0,4x-1,4=0. Решить его методом методом простых итераций с точностью решения=0,001.
Для нахождения корня исследуем функцию .
Выбираем концы отрезка: a= -0.1; b = 1.5 График функции на этом отрезке представлен на рисунке 2.15.
Рисунок 2.15 — График функции на выбранном отрезке.
Найдем корень с помощью встроенной функции root :
Приводим уравнение к виду x=f (x), где
Проверим условие сходимости:
Максимальное по модулю значение производной итерационной функции достигается в левом конце отрезка:
Интерполяция является одним из способов аппроксимации функции. Смысл аппроксимации заключается в том, что производится замена одной функции другой в некотором смысле близкой.
Такая задача возникает по многим соображениям в частности, из-за удобства вычисления значений функции, вычисления производных и т.д.
Допустим, в n+1 точке заданы значения x0 ,x1 ,…xn и соответствующие им значения f (x0 ), f (x1 ), …, f (xn ). Значения f (xi ) вычисляются только в случае, если известна функция f (x), но эти значения могут быть получены, например, экспериментальным путем как значение некой неизвестной функции.
Точки xi , в которых известны значения функции, носят названия узлов интерполяции .
Интерполяция заключается в выборе функции φ (х), значения которой в узлах интерполяции совпадают со значениями f (xi ).
Между узлами значения этих функций могут отличаться (рисунок 3.1).
Рисунок 3.1 – Интерполяция
Мы рассмотрим простейший случай, когда в качестве интерполируемой функции используется полином степени n. Преимущества такой интерполяции очевидны. Значения полинома легко вычисляются, имеют непрерывную производную.
Пусть известны значения некоторой функции f в n+1 различных точках. Возникает задача приближенного восстановления функции f в произвольной точке x. Часто для решения этой задачи строится алгебраический многочлен Ln (x) степени n, который в точках xi принимает заданные значения, т.е.
и называется интерполяционным.
В частности, мы рассматриваем построение интерполирующего многочлена Лагранжа.
,
fi — значения интерполируемой функции в i-том узле;
— коэффициент интерполяции Лагранжа
.
Можно сказать, что L1 (x) — линейная функция x, поэтому такую интерполяцию называют линейной (она производится для двух точек).
Интерполяционный многочлен Лагранжа обладает тем недостатком, что в случае, когда добавляются новые узлы интерполяции, все слагаемые необходимо пересчитывать. Но, с другой стороны, он обладает тем достоинством, что интервалы между узлами могут быть неравномерными.
Обратная интерполяция заключается в построении зависимости x (y) и, затем, с помощью такого многочлена легко можно найти корень нелинейного уравнения.
Многочлен Лагранжа в этом случае выглядит следующим образом:
,
— коэффициент интерполяции Лагранжа
.
Если задано достаточно много узлов на отрезке [a,b], то интерполирующие функции на отрезке [a,b] представляют собой непрерывную функцию, уже первая производная которой является кусочно-непрерывной.
В узлах, где происходит стыковка отдельных интерполяционных многочленов, производная рвется. Этого недостатка не имеет интерполяция сплайнами.
Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
3.3 Интерполяция сплайнами
Пусть отрезок [a, b] разбит на n одинаковых частей точками x0 , x1, …xn .
Сплайном называется непрерывная на [a, b] и имеющая непрерывные производные функция, на каждом из частичных участков представляющая собой алгебраический многочлен. Порядком сплайна называется старший порядок многочлена, а дефектом сплайна называется разность между порядком сплайна и старшей непрерывной производной.
Например, линейная интерполяция — это сплайн первого порядка с дефектом 1.
Наиболее широкое распространение на практике имеет кубический сплайн. Если сплайн используется для интерполяции некоторой функции и ее производных, т.е. в узлах интерполяции значение сплайна и ее производных некоторых порядков совпадают со значениями функции и ее производных соответствующих порядков, то такой сплайн называется интерполяционным.
Если интерполяционный сплайн на заданном отрезке рассматривать как совокупность кубических сплайнов для каждой пары точек, такая интерполяция носит название локальной интерполяции.
Этот сплайн не прерывен вместе с первой производной, но непрерывность второй производной не гарантируется, т.е. дефект сплайна равен 2. Если этот сплайн имеет непрерывную вторую производную на отрезке [a, b], т.е. имеет дефект 1, то такой сплайн носит название глобального.
Для построения кубического сплайна используется формула:
Для построения глобального сплайна, т.е. сплайна с дефектом 1 необходимо, начиная со 2-го узла, поставить условие непрерывности 2-й производной, т.е.2-я производная при подходе к точке 2 и дальше слева (x1 -0) должна равняться второй производной при подходе справа (x1 +0).
Такие равенства можно составить для всех внутренних узлов x1 до xn-1 . Затем используем условия на краях x0 и xn , получаем систему уравнений, которая и обеспечит дефект 1.
Очевидно, что при наличии S3 на соответствующих участках, построение таких равенств не представляет особого труда.
Приравнивая эти значения, для определения m получим СЛАУ.
В двух крайних точках:
Если функция задана в виде таблиц, то для вычисления производных используеться результаты, получаемые при численном диференцировании, порядок точности которых не ниже 3-ей степени.
Задание: найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравносторонних узлах таблицы. Дана функция:
Составляем таблицу узлов интерполяции:
Поскольку n=5 строим интерполяционный многочлен L5 (x):
Задание: найти приближенное значение корня данном значении функции с помощью интерполяционного многочлена Лагранжа, если функция задана в равносторонних узлах таблицы.
Составляем таблицу узлов интерполяции:
i
Xi
Yi
0
-0,7
-0.34091
1
-0,5
-0.02638
2
-0,3
0.21059
3
-0,1
0.37098
4
0,1
0.4559
Поскольку n=4 строим интерполяционный многочлен L4 (y):
Подставляя заданное значение функции, получаем ответ:
Таким образом, получаем приближенное значение корня:
При подстановки этого аргумента в заданную функцию, получаем результат:
f (-0,47591) = 0.00625
Видео:15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
3.4.3 Интерполяция сплайнами
На участке [b,b+2] выбрать 3 точки (b,b+1,b+2), построить два сплайна на двух отрезках, убедиться в том, что в точке b+1 производная не терпит разрыва.
i
1
2
3
xi
0
1
2
yi
0.42279
-0.4955
-1.93404
Для построения сплайна используем формулы:
h=
Таким образом, нам необходимо, чтобы вторая производная была непрерывна, т.е. получить сплайн с дефектом 1.
Для построения глобального сплайна необходимо, начиная со второго узла поставить условие непрерывности 2-ой производной, т.е.2-ая производная при подходе к точке 2 и дальше слева (x1 -0) должна равняться 2-ой производной при подходе справа (x1 +0):
Приравнивая эти значения, получаем:
Для нашей функции получаем:
0.42435
— 2.10346
После того, как мы нашли m1 , можем построить графики (рисунок 3.2).
S3 (x1 +0)
S3 (x1 -0)
Рисунок 3.2 — Глобальная интерполяция сплайнами
Также можно сравнить с графиком самой функции (рисунок 3.3).
S3 (x1 +0)
F(x)
S3 (x1 -0)
Рисунок 3.3 — Сравнение графика функции и глобальной интерполяции
На рисунках 3.4 представлена программа для использования интерполяции сплайнами. Пользователь вводит необходимые данные и при нажатии кнопки «График» строится кубический сплайн.
Листинг программы представлен в приложении В.
Рисунок 3.4 — Программа для использования интерполяции сплайнами
Видео:Кобельков Г. М.- Численные методы. Часть 1 Семинары - Теория интерполяцииСкачать
4. Итерационные методы решения систем линейных алгебраических уравнений
4.1 Общие сведения
К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы — алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.
4.2 Метод простой итерации
4.2.1 Описание метода
Рассмотрим СЛАУ вида
Ax = B, где А — матрица. (1)
Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру
xk → x*, где х* — решение заданной системы.
В конечном варианте система будет имееть вид:
Условием сходимости для матрицы С выполняется, если сумма модулей коэффициентов меньше единицы по строкам или по столбцам, т.е.
, или .
Необходимо, чтобы диагональные элементы матрицы А были ненулевыми.
Для преобразования системы можно выполнить следующие операции:
В результате получим систему:
В ней на главной диагонали матрицы С находятся нулевые элементы, остальные элементы выражаются по формулам:
Итерационный процесс продолжается до тех пор, пока значения х1 ( k), х2 ( k), х3 ( k) не станут близкими с заданной погрешностью к значениям х1 ( k-1), х2 ( k-1), х3 ( k-1).
4.2.2 Решение СЛАУ методом простых итераций
Решить СЛАУ методом простых итераций с точностью .
Для удобства преобразуем систему к виду:
,
Принимаем приближение на 0-ом шаге:
,
,
На 1-м шаге выполняем следующее:
Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 5-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 6-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
Необходимая точность достигнута на 6-й итерации. Таким образом, итерационный процесс можно прекратить.
4.2.3 Программа для решения СЛАУ методом простых итераций
На рисунке 4.1 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.
Листинг программы приведен в приложении Г.
Рисунок 4.1 — Программа «Метод простых итераций»
4.3 Метод Зейделя
4.3.1 Описание метода
В этом методе результаты, полученные на k-том шаге, используются на этом же шаге. На (k+1) — й итерации компоненты приближения вычисляются по формулам:
Этот метод применим к система уравнений в виде Ax=B при условии, что диагональный элемент матрицы коэффициентов A по модулю должен быть больше, чем сумма модулей остальных элементов соответствующей строки (столбца).
Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:
, либо
4.3.2 Решение СЛАУ методом Зейделя
Решить СЛАУ методом Зейделя с точностью .
Эту систему можно записать в виде:
В этой системе сразу видно, что выполняется условие, где диагональные элементы матрицы коэффициентов по модулю больше, чем сумма модулей остальных элементов соответствующей строки.
Для удобства преобразуем систему к виду:
,
Принимаем приближение на 0-ом шаге:
На 1-м шаге выполняем следующее:
Подставляем принятые приближения в первоначальную систему уравнений
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 2-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
На 3-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса:
:
На 4-м шаге выполняем следующее:
Смотрим не выполняется ли условие остановки итерационного процесса
:
Необходимая точность достигнута на 4-й итерации. Таким образом, итерационный процесс можно прекратить.
4.3.3 Программа дл решения СЛАУ методом Зейделя
На рисунке 4.2 представлена программа для решения систем алгебраических линейных уравнений методом простых итераций.
Листинг программы приведен в приложении Г.
Рисунок 4.2 — Программа «Метод Зейделя»
4.4 Сравнительный анализ
Можно заметить, что в методе Зейделя быстрее мы достигаемой нужной точности, в нашем случае в точность была достигнута на 4-й итерации, когда в методе простых итераций она была достигнута на 6-й итерации. Но в то же время в методе Зейделя ставится больше условий. Поэтому вначале нужно произвести иногда довольно трудоемкие преобразования. В таблице 4.1 приведены результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации: