Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Решение задач вычислительной математики

Видео:Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

Решение нелинейных уравнений и систем

К нелинейным уравнениям относятся алгебраические и трансцендентные уравнения. Напомним, что алгебраическое уравнение — это уравнение, левая часть которого задана алгебраическим полиномом, т.е. имеет вид

где а^1 = 0,п, — вещественные коэффициенты. Следовательно, решения (корни) алгебраического уравнения — это корни соответствующего полинома. Трансцендентным уравнением называют уравнение, в котором неизвестная величина является аргументом показательной, логарифмической или тригонометрической функции.

Численное решение нелинейного уравнения состоит из двух этапов: отделения корня и уточнения корня. При отделении корня ищут отрезок, на котором находится только один корень. На этапе уточнения корень вычисляют с заданной точностью.

Решение нелинейных уравнений и систем в Scilab

Для решения нелинейных уравнений в Scilab применяют функцию fsolve(xO, f), где хО — начальное приближение, f -функция, описывающая левую часть уравнения f(x) = 0. Если нелинейное уравнение является алгебраическим, то для нахождения его корней можно также использовать функцию roots, описанную в п. 1.2.4.

Пример. Решить уравнение 7х 3 +45х 2 +12х + 23 = 0.

Набираем в окне редактора файл

у = 7*х. Л 3 + 45*х. л 2 + 12*х + 23;

и сохраняем его под именем f.sci. Загружаем его в Scilab (команда Executes Load into Scilab).

Для нахождения отрезка [а, Ь], на котором отделен корень уравнения, построим график функции у = 7х 3 + 45х 2 +12х + 23.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рис. 4.1. Графическое решение уравнения 7х 3 + 45х 2 + 12х + 23 = 0

Из графика видно, что корень отделен на отрезке [-6.5, -6]. Найдем его, используя функцию fsolve:

-> хО = -6.5; х1 = fsolve(xQ, f)

Второй способ (использование функции roots):

  • -6.2381997
  • -0.0951859 + 0.7194779!
  • -0.0951859 -0.7194779i

Пример. Решить уравнение е х /5-2(х-1) 2 =0.

—> х = [-5:0.1:6]; у =ехр(х)/5 — 2*(х -1 ). Л 2; plot(x, у), xgridQ

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рис. 4.2. Графическое решение уравнения е х /5-2(х-1) 2 =0

Из рис. 4.2 видно, что график функции у трижды пересекает ось абсцисс, т.е. уравнение имеет три корня. Определим функцию у непосредственно в командном окне, используя оператор deff:

Теперь, вызывая функцию fsolve три раза с различными начальными приближениями, получим все решения заданного уравнения:

—> х1 = fsolved, f), х2= fsolve(2, f), x3= fsolve(2, f)

Удобно задать начальные приближения в виде вектора, тогда функцию fsolve можно вызвать только раз:

С помощью функции fsolve можно решать не только нелинейные уравнения, но и системы нелинейных уравнений.

п г» w |х 2 +у 2 =1

Пример. Решить систему уравнении

Построим графики линий, заданных уравнениями системы. Для этого наберем в окне редактора файл-сценарий:

f=-3:0.1:3; х = sin(f); у = cos(t); plot(x, у) // график окружности в параметрической форме

z=f A 3; plot(t, z), xgrid() // график гиперболы

Графическое решение системы показывает, что она имеет две пары корней (см. рис. 4.3). Окружность и гипербола пересекаются в точках (0.8, 0.6) и (-0.8, -0.6). Эти значения приблизительны, Чтобы уточнить их, применим функцию fsolve, предварительно задав систему с помощью файла-функции:

function у = fun(x)

//решение системы нелинейных уравнений

у(1)=х(1) л 2 + х(2) л 2 — 1;

После сохранения и загрузки этого файла, воспользуемся функцией fsolve:

  • —>fsolve([-Q.5 -0.5], fun) ans = -0.8260314 — 0.5636242
  • -> feo/ve([0.5 0.5], fun) ans = 0.8260314 0.5636242

Таким образом, решением системы являются две пары чисел (%1,yj = (-0.8260314; -0.5636242) и (х2, у2) = (0.8260314; 0.5636242)

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рис. 4.3. Графическое решение системы уравнений

Видео:Метод дихотомииСкачать

Метод дихотомии

Метод половинного деления (метод дихотомии или метод бисекции)

Теорема 2. Итерационный процесс половинного деления сходится к искомому корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим последовательность чисел ξi являющихся приближением корня на i -ом шаге.
ξi=½(bi+ai), i=0,1.
где a0=a; b0=b; ai;bi — границы подынтервалов, в которых f(ai)f(bi) 0 мы ни задали, всегда можно найти такое n , что Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilabч.т.д.
Графически метод дихотомии выглядит следующим образом
Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab
|f(c)|≤δ f(a)f(c) 10 = 1024 ≈ 10 3 раз. За 20 итераций (n=2) уменьшается в 2 20 ≈ 10 6 раз.

Пример №1 . Найти экстремум функции: y=5x 2 -4x+1 методом дихотомии, если ε=0.1, а исходный интервал [0,10].

  • Решение
  • Видео решение

Пример №3 . Методом бисекции найти решение нелинейного уравнения на отрезке [a,b] с точностью ε = 10 -2 . Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε = 10 -4 . Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
sqrt(t)+x 2 = 10, a = 2.6, b = 3

Найдем корни уравнения: Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab
Используем для этого Метод половинного деления (метод дихотомии)..
Считаем, что отделение корней произведено и на интервале [a,b] расположен один корень, который необходимо уточнить с погрешностью ε.
Итак, имеем f(a)f(b) 1 /2(a+b) и вычисляем f(c). Проверяем следующие условия:
1. Если |f(c)| 1 /2 n (b-a)
В качестве корня ξ. возьмем 1 /2(an+bn). Тогда погрешность определения корня будет равна (bn – an)/2. Если выполняется условие:
(bn – an)/2 1 /2(an+bn).
Решение.
Поскольку F(2.6)*F(3) 0, то a=2.8
Итерация 2.
Находим середину отрезка: c = (2.8 + 3)/2 = 2.9
F(x) = 0.113
F(c) = -0.487
Поскольку F(c)•F(x) 0, то a=2.825
Остальные расчеты сведем в таблицу.

Ncabf(c)f(x)
12.632.8-1.6275-0.4867
22.832.9-0.48670.1129
32.82.92.850.1129-0.1893
42.82.852.825-0.1893-0.3386
52.8252.852.8375-0.3386-0.2641
62.83752.852.8438-0.2641-0.2267

Ответ: x = 2.8438; F(x) = -0.2267
Решение было получено и оформлено с помощью сервиса Метод Ньютона онлайн

Пример №2 . Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью ε1 = 0,01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2 = 0,0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.

Видео:Алгоритмы. Нахождение корней уравнения методом хордСкачать

Алгоритмы. Нахождение корней уравнения методом хорд

1 Численный метод решения нелинейных уравнений

Видео:Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать

Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)

1.1 Область локализации корней

В общем виде любое уравнение одной переменной принято записывать так Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab , при этом корнем (решением) называется такое значение x*, что Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab оказывается верным тождеством. Уравнение может иметь один, несколько (включая бесконечное число) или ни одного корня. Как легко видеть, для действительных корней задача отыскания решения уравнения легко интерпретируется графически: корень есть такое значение независимой переменной, при котором происходит пересечение графика функции, стоящей в левой части уравнения f ( x ), с осью абсцисс.

Например , для уравнения Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab выполним преобразование и приведем его к виду f(x)= 0 т.е. Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab . График этой функции представлен на рисунке 1. Очевидно, что данное уравнение имеет два действительных корня – один на отрезке [-1, 0] , а второй – [1, 2].

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 1. График функции Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Таким образом, можно приблизительно определять область локализации корней уравнения. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.

Некоторые виды уравнений допускают аналитическое решение. Например, степенные алгебраические уравнения степени n Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab при n ≤ 4. Однако, в общем виде, аналитическое решение, как правило, отсутствует. В этом случае, применяются численные методы. Все численные методы решения уравнений представляют собой итерационные алгоритмы последовательного приближения к корню уравнения. То есть, выбирается начальное приближение к корню x 0 и затем с помощью итерационной формулы генерируется последовательность x 1, x 2, …, xk сходящаяся к корню уравнения Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab .

Видео:Метод дихотомии c++Скачать

Метод дихотомии c++

1.2 Критерии сходимости при решении уравнений

Ø Абсолютная погрешность — абсолютное изменение приближения на соседних шагах итерации Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Ø Относительная погрешность — относительное изменение приближения на соседних шагах итерации Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Ø Близость к нулю вычисленного значения левой части уравнения (иногда это значение называют невязкой уравнения, так как для корня невязка равна нулю) Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Видео:8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравнения

1.3 Метод половинного деления (метод дихотомии)

Метод половинного деления основан на последовательном делении отрезка локализации корня пополам.

Для этого выбирается начальное приближение к отрезку [ a , b ], такое, что f ( a ) × f ( b ) Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab — середине отрезка [ a , b ]. Если он противоположен знаку функции в точке a, то корень локализован на отрезке [ a , c ], если же нет – то на отрезке [ c , b ]. Схема метода дихотомии приведен на рис у нке 2.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 2. Последовательное деление отрезка пополам и приближение к корню Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Алгоритм метода дихотомии можно записать так:

1. представить решаемое уравнение в виде Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

2. выбрать a, b и вычислить Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

3. если f(a) × f( с ) то a=a; b = c иначе a = c; b=b

4. если критерий сходимости не выполнен, то перейти к п. 2

Видео:Решение нелинейного уравнения методом половинного деления (программа)Скачать

Решение нелинейного уравнения методом половинного деления (программа)

Пример решения уравнения методом дихотомии

Найти решение заданного уравнения методом дихотомии с точностью до 10 -5 .

Пример создания расчетной схемы на основе метода дихотомии на примере уравнения: Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilabна отрезке [1, 2]

Данный метод заключается в проверке на каждой итерации условия:

если f ( a ) × f (с) Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab и выбор соответствующего отрезка для следующей итерации.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 3. Последовательность итераций метода дихотомии при поиске корня уравнения Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilabна отрезке [1, 2]

a ) схема расчета (зависимые ячейки); b) режим отображения формул;

Для нашего примера итерационная последовательность для нахождения решения принимает вид:

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Точность до пятой значащей цифры достигается за 20 итераций.

Скорость сходимости этого метода является линейной.

При выполнении начального условия он сходится к решению всегда.

Метод половинного деления удобен при решении физически реальных уравнений, когда заранее известен отрезок локализации решения уравнения.

Видео:6 Метод половинного деления C++ Численные методы решения нелинейного уравненияСкачать

6 Метод половинного деления C++ Численные методы решения нелинейного уравнения

2 Решение уравнений , используя “Подбор параметра ”

Используя возможности Excel можно находить корни нелинейного уравнения вида f(x)=0 в допустимой области определения переменной. Последовательность операций нахождения корней следующая:

1. Производится табулирование функции в диапазоне вероятного существования корней;

2. По таблице фиксируются ближайшие приближения к значениям корней;

3. Используя средство Excel Подбор параметра, вычисляются корни уравнения с заданной точностью.

При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются в меню Сервис/Параметры/вкладка Вычисления. Если Excel выполняет сложную задачу подбора параметра, можно нажать кнопку Пауза в окне диалога Результат подбора параметра и прервать вычисление, а затем нажать кнопку Шаг, чтобы выполнить очередную итерацию и просмотреть результат. При решении задачи в пошаговом режиме появляется кнопка П родолжить — для возврата в обычный режим подбора параметра.

Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

2.1 Пример решения уравнения, используя “Подбор параметра”

Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3].

Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3; 3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 4. Поиск приближенных значений корней уравнения

Выполните команду меню Сервис/Параметры, во вкладке Вычисления установите относительную погрешность вычислений E=0,00001, а число итераций N=1000, установите флажок Итерации.

Выполните команду меню Сервис/Подбор параметра. В диалоговом окне (рисунок 9) заполните следующие поля:

þ Установить в ячейке : в поле указывается адрес ячейки, в которой записана формула правой части функции;

þ Значение : в поле указывается значение, которое должен получить полином в результате вычислений, т.е. правая часть уравнения (в нашем случае 0);

þ Изменяя значение : в поле указывается адрес ячейки (где записано начальное приближение), в которой будет вычисляться корень уравнения и на которую ссылается формула.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 5. Диалоговое окно Подбор параметра для поиска первого корня

После щелчка на ОК получим значение первого корня -1,65793685 .

Выполняя последовательно операции аналогичные предыдущим, вычислим значения остальных корней: -0,35913476 и 2,05170101 .

Видео:7 Метод половинного деления Mathcad Численные методы решения нелинейного уравненияСкачать

7 Метод половинного деления Mathcad Численные методы решения нелинейного уравнения

3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения”

Для решения уравнений можно также использовать команду Поиск решения, доступ к которой реализуется через пункт меню Сервис/Поиск решения.

Последовательность операций нахождения корней следующая:

1. Найти приближенное значение корня уравнения

2. Открыть диалог Поиск решения и установить следующие параметры (рисунок 10):

þ в поле У становить целевую ячейку ввести адрес ячейки, содержащей формулу (левую часть уравнения);

þ установить переключатель в положение ‘ значению’ и ввести значение 0 (правая часть уравнения);

þ в поле Изменяя ячейки ввести адреса изменяемых ячеек, т.е. аргумента x целевой функции,;

þ в поле Ограничения с помощью кнопки Д обавить ввести все ограничения, которым должен отвечать результат поиска (область поиска корня уравнения);

þ для запуска процесса поиска решения нажать кнопку В ыполнить.

þ Для сохранения полученного решения необходимо использовать переключатель С охранить найденное решение в открывшемся окне диалога Результаты поиска решения.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 6. Диалоговое окно Поиск решения

Полученное решение зависит от выбора начального приближения. Поиск начальных приближений рассмотрен выше.

Рассмотрим некоторые Опции, управляющие работой Поиска решения, задаваемые в окне Параметры (окно появляется, если нажать на кнопку Параметры окна Поиск решения):

þ Максимальное время — ограничивает время, отведенное на процесс поиска решения (по умолчанию задано 100 секунд, что достаточно для задач, имеющих около 10 ограничений, если задача большой размерности, то время необходимо увеличить).

þ Относительная погрешность — задает точность, с которой определяется соответствие ячейки целевому значению или приближение к указанным ограничениям (десятичная дробь от 0 до 1).

þ Неотрицательные значения — этим флажком можно задать ограничения на переменные, что позволит искать решения в положительной области значений, не задавая специальных ограничений на их нижнюю границу.

þ Показывать результаты итераций — этот флажок позволяет включить пошаговый процесс поиска, показывая на экране результаты каждой итерации.

þ Метод поиска — служит для выбора алгоритма оптимизации. Метод Ньютона был рассмотрен ранее. В Методе сопряженных градиентов запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и если итерации дают слишком малое отличие в последовательных приближениях.

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 7. Вкладка Параметры окна Поиск решения

Видео:Решение уравнений (метод дихотомии) на C#Скачать

Решение уравнений (метод дихотомии) на C#

3.1 Пример решения уравнения, используя надстройку “Поиск решения”

Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3]. Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3;3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня. На рисунке 12 представлен пример заполнения окна Поиск решения для нахождения первого корня на отрезке [-2; -1].

Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab

Рисунок 8. Пример решения уравнения при помощи надстройки Поиск решения

Видео:Метод половинного деленияСкачать

Метод половинного деления

Задание 1. Решение уравнений численным методом

На листе 1 (название листа: Численные методы) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания ) реализовать итерационные расчетные схемы методов, указанных в Таблице 1 для нахождения хотя бы одного корня на заданном интервале. Количество итераций просчитать, оценивая Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab , Нахождение корней нелинейного уравнения методом дихотомии рекурсивно в scilab.

Видео:1,2 Решение нелинейных уравнений методом хордСкачать

1,2 Решение нелинейных уравнений методом хорд

Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения”

На листе 2 (название листа: Подбор Поиск) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания) на заданном интервале и с некоторым шагом (шаг выбрать самостоятельно) построить таблицу значений функции f(x) и определить количество корней уравнения и выделить интервалы, на которых находятся корни. Построить график функции. Уточнить на заданных интервалах с точностью до 10 -6 корни уравнения с помощью встроенных средств: Подбор параметра, Поиск решения

💥 Видео

Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

Решение нелинейного уравнения методом хорд (секущих) (программа)Скачать

Решение нелинейного уравнения методом хорд (секущих) (программа)

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Численные методы - Занятие 1: Численное решение уравнения методом дихотомииСкачать

Численные методы - Занятие 1: Численное решение уравнения методом дихотомии

Метод хордСкачать

Метод хорд

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения
Поделиться или сохранить к себе: