Na al oh 4 диссоциация уравнение

Комплексные соединения

Материалы портала onx.distant.ru

Состав комплексных соединений

Номенклатура комплексных соединений

Реакции образования комплексных соединений

Реакции разрушения комплексных соединений

Диссоциация комплексных соединений

Примеры решения задач

Задачи для самостоятельного решения

Содержание
  1. Состав комплексных соединений
  2. Номенклатура комплексных соединений
  3. Реакции образования комплексных соединений
  4. Реакции разрушения комплексных соединений
  5. Диссоциация комплексных соединений
  6. Задачи для самостоятельного решения
  7. Лабораторная работа №5 Комплексные (координационные) соединения
  8. Экспериментальная часть
  9. Опыт 1. Получение и разрушение гидроксокомплексов
  10. Na2[Zn(OH)4] + 2HNO3 → 2NaNO3 + Zn(OH)2¯ + 2Н2О
  11. Na[Al(OH)4] + HCl → Al(OH)3¯ + NaCl ¯ + Н2О
  12. Опыт 2. Получение сульфата тетраамминмеди(II) и его разрушение (качественная реакция на ион Cu2+)
  13. Налейте в пробирку 2 мл раствора сульфата меди и добавьте по каплям 2 моль/л раствор аммиака до образования осадка сульфата гидроксомеди(II) (CuOH)2SO4. Запишите цвет образовавшегося осадка. Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
  14. 2CuSO4 + 2NH3 + 2H2O → (CuOH)2SO4 + (NH4)2SO4
  15. Добавьте в пробирку концентрированный раствор аммиака до полного растворения осадка (CuOH)2SO4. Запишите цвет раствора сульфата тетраамминмеди (II). Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
  16. [Cu(NH3)4]SO4 + 2H2SO4 + 4H2O → [Cu(H2O)4]SO4 + 2(NH4)2SO4
  17. [Cu(NH3)4]SO4 + Na2S → CuS + Na2SO4 + 4NH3
  18. Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах
  19. 📹 Видео

Видео:Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

Состав комплексных соединений

Na al oh 4 диссоциация уравнение

Рис. 1. Состав комплексного соединения

Комплексное соединение, рисунок 1, состоит из внутренней и внешней сферы. Центральная частица, вокруг которой расположены окружающие ее лиганды, называется комплексообразователем. Число лигандов комплексообразователя называется координационным числом.

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Номенклатура комплексных соединений

Комплексное соединение может состоять из комплексного катиона, комплексного аниона или может быть нейтральным.

Соединения с комплексными катионами . Вначале называют внешнесферный анион, затем перечисляют лиганды, затем называют комплексообразователь в родительном падеже (ему дается русское название данного элемента). После названия комплексообразователя в скобках римской цифрой указывается его степень окисления.

К латинскому названию анионного лиганда добавляется окончание “о” (F — — фторо, Cl — -хлоро, ОН — — гидроксо, CN — — циано и т.д). Аммиак обозначают термином “аммин”, СО – карбонил, NO – нитрозил, H2O – аква.

Число одинаковых лигандов называют греческим числительным: 2 –ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса, 7 – гепта и т.д.

Вначале перечисляют лиганды анионные, затем нейтральные, затем катионные. Например,

[Pt(NH3)5Cl]Cl3 – хлорид хлоропентаамминплатины (IV) .

Если в комплексе имеются несколько лигандов одинакового знака заряда, то они называются в алфавитном порядке:

Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды, затем комплексообразователь (ему дается латинское название и к названию добавляется окончание “ат”). После названия комплексообразователя указывается его степень окисления. Затем в родительном падеже называется внешнесферный катион.

Na2[Zn(OH)4] – тетрагидроксоцинкат (II) натрия;

K4[Fe(CN)6] – гексацианоферрат (II) калия;

K2[СuCl4] – тетрахлорокупрат (II) калия.

Соединения без внешней сферы. Вначале называют лиганды, затем комплексообразователь в именительном падеже с указанием его степени окисления. Все название пишется слитно.

[Ni(CО)4] – тетракарбонилникель (0);

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Реакции образования комплексных соединений

Комплексные соединения обычно получают действием избытка лигандов на содержащее комплексообразователь соединение. Координационное число, как правило, в 2 раза больше степени окисления комплексообразователя. Из этого правила бывают, однако, исключения.

Образование комплексных солей.

Если комплексообразователем является Fe 2+ или Fe 3+ , то координационные числа в обоих случаях равны шести:

Координационные числа ртути и меди, как правило, равны четырем:

Для большинства аква- и амминных комплексов ионов d-элементов координационное число равно шести:

Видео:Комплексные соединения. 1 часть. 11 класс.Скачать

Комплексные соединения. 1 часть. 11 класс.

Реакции разрушения комплексных соединений

Разрушение комплексных соединений происходит в результате:

      • образования малорастворимого соединения с комплексообразователем:
      • образования более прочного комплексного соединения с комплексообразователем или с лигандом:
      • действия любой сильной кислоты на гидрокомплексы; в этом случае образуется соль и вода:

Видео:Ионные уравнения реакций. Как составлять полные и сокращенные уравненияСкачать

Ионные уравнения реакций. Как составлять полные и сокращенные уравнения

Диссоциация комплексных соединений

Комплексные соединения в водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы. В то же время комплексный ион диссоциирует в незначительной степени как ассоциированный электролит. Количественной характеристикой диссоциации внутренней сферы в растворе является константа нестойкости, представляющая собой константу равновесия процесса диссоциации комплексного иона.

Например , в растворе комплексное соединение [Ni(NH3)6]SO4 диссоциирует следующим образом:

Для комплексного иона [Ni(NH3)6] 2+ , диссоциирующего по уравнению

константа равновесия процесса диссоциации носит название константы нестойкости Кн. Для рассматриваемого процесса Кн равна

Кн = [Ni 2+ ]·[NH3] 6 / [[Ni(NH3)6] 2+ ] (1)

Величина, обратная Кн, называется константой устойчивости:

Она представляет собой константу равновесия процесса образования комплексного иона:

Константа нестойкости Кн связана с изменением энергии Гиббса процесса диссоциации комплекса уравнением:

ΔGT о = — RTln Кн (3)

Примеры решения задач:

Задача 1. Вычислите:

1) Концентрацию ионов NO3 — в 0,01 М растворе [Ag(NH3)2]NO3.

2) Концентрацию Ag + в 0,01 М растворе [Ag(NH3)2]NO3, содержащем 2 моль/л избыточного аммиака,
если Кн[Ag(NH3)2] + = 5,7× 10 — 8 при 298 К.

3) Величину ΔG o 298 процесса диссоциации комплексного иона.

[NO3 — ] = 0,01М, поскольку комплекс диссоциирует как сильный электролит на комплексный ион и ионы внешней сферы.

2) Комплексный ион диссоциирует незначительно:

Положение равновесия комплексного иона в присутствии избытка NH3 еще больше смещено влево.

Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Ag + и 2x моль/л аммиака. Суммарная концентрация аммиака равна (2x+2) моль/л. Концентрация недиссоциированного комплексного иона [Ag(NH3)2] + составляет: (0,01–x) моль/л.

Концентрация аммиака, связанная с диссоциацией комплексного иона, ничтожно мала по сравнению с избытком аммиака. Доля комплексного иона, подвергшегося диссоциации, также ничтожно мала. Значит,

Na al oh 4 диссоциация уравнение

Следовательно, [Ag + ] = 1,43× 10 — 10 моль/л.

Константа нестойкости связана с изменением энергии Гиббса процесса диссоциации [Ag(NH3)2] + уравнением:

Значит, при Т = 298 К получаем:

ΔG о 298 = — 8,314× 298× ln5,7× 10 — 8 = 41326 Дж = 413,3 кДж.

Задача 2. Произойдет ли осаждение AgCl при сливании 0,01М раствора [Ag(NH3)2]NO3, содержащего 2 моль/л избыточного NH3, с равным объемом 0,5М раствора KCl, если при 298 К ПР(AgCl) = 1,73× 10 — 10 , Кн.[Ag(NH3)2] + = 5,7× 10 — 8 .

Решение. Осадок выпадет при условии: [Ag + ][Сl — ] > ПР(AgCl), т.е. если произведение концентраций ионов Ag + и Сl — в растворе будет больше ПР, то раствор окажется пересыщенным и из него будет выпадать осадок.

После смешения равных объемов растворов концентрации [Ag(NH3)2]NO3, NH3 и KCl уменьшатся в 2 раза и станут равными 5× 10 -3 , 1 и 0,25 М соответственно.

Найдем концентрацию [Ag + ] тем же способом, что и в предыдущей задаче,

откуда x = 2,85× 10 — 10 .

Значит, [Ag + ] = 2,85× 10 — 10 моль/л, а [Сl — ] = 0,25 моль/л.

Следовательно, произведение концентраций ионов равно:

[Ag + ][Сl — ] = 2,85× 10 — 10 × 0,25 = 7,1× 10 — 11 (моль/л) 2 .

Поскольку [Ag + ][Сl — ] = 7,1× 10 — 11 — 10 , то осадок не выпадет.

Задача 3. При какой концентрации ионов S 2- начнется выпадение осадка CdS из 0,6М раствора Na2[Cd(CN)4], содержащего 0,04 моль/л избыточного NaCN, если ПР(CdS) = 7,9× 10 — 27 , Кн[Cd(CN)4] 2- = 7,8× 10 — 18 .

Решение. Осадок выпадет при условии: [Cd 2+ ][S 2- ] > ПР(CdS), т.е. если произведение концентраций ионов Cd 2+ и S 2- в растворе будет больше ПР. Следовательно, выпадение осадка начнется при [S 2- ] > ПР(CdS):[Cd 2+ ].

Комплексный ион диссоциирует незначительно:

[Cd(CN)4] 2- → Cd 2+ + 4CN —

Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Cd 2+ и 4x моль/л ионов CN — . Суммарная концентрация ионов CN — равна (4x + 0,04) моль/л. Концентрация недиссоциированного комплексного иона [Cd(CN)4] 2- составляет: (0,6 – x) моль/л.

Кн[Cd(CN)4] 2- = [Cd 2+ ] · [CN — ] 4 / [[Cd(CN)4] 2- ]

Следовательно, [Cd 2+ ] = 1,8·10 — 12 моль/л.

Выпадение осадка начнется при [S 2- ] > 7,9·10 — 27 : 1,8·10 — 12 > 4,39·10 — 15 моль/л.

Видео:Решение цепочек превращений по химииСкачать

Решение цепочек превращений по химии

Задачи для самостоятельного решения

1. Назовите следующие комплексные соединения:

Na2[Pt(CN)4Cl2] – дихлоротетрацианоплатинат (IV) натрия;

2. Назовите следующие комплексные соединения

[Ni(NH3)6][PtCl4] – тетрахлороплатинат (II) гексаамминникеля (II).

3. Составьте уравнение химической реакции:

4. Составьте уравнение химической реакции:

5 . Составьте уравнение химической реакции:

6. Составьте уравнение химической реакции:

7. Составьте уравнение химической реакции:

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙ

Лабораторная работа №5 Комплексные (координационные) соединения

Na al oh 4 диссоциация уравнение

Лабораторная работа №5

Комплексные (координационные) соединения

Комплексные (координационные) соединения – это соединения, в которых хотя бы одна из ковалентных связей образована по донорно-акцепторному механизму.

Все координационные соединения состоят из внутренней сферы (комплексной частицы), а в случае катионных и анионных координационных соединений – и из внешней сферы. Между внутренней и внешней сферой координационного соединения связь ионная.

Внутренняя сфера (комплексная частица) состоит из центрального атома (атома металла-комплексообразователя) и лигандов.

В формуле комплексных соединений внутренняя сфера заключается в квадратные скобки. Внутренняя сфера не имеет заряда в нейтральных комплексах, положительно заряжена в катионных, а отрицательно – в анионных координационных соединениях. Заряд внутренней сферы – алгебраическая сумма зарядов центрального атома и лигандов.

Центральный атом – это чаще всего ион d — элемента: Ag+, Cu2+, Hg2+, Zn2+, Ni2+, Fe3+, Pt4+ и др.

Координационное число центрального атома – число ковалентных связей между комплексообразователем и лигандами.

Как правило, координационное число в два раза превышает заряд центрального атома. В большинстве комплексных соединений координационные числа равны 6 и 4, реже 2, 3, 5 и 7.

Лиганды – анионы или молекулы, связанные с центральным атомом ковалентными связями, образованными по донорно-акцепторному механизму. Лигандами могут быть полярные молекулы (H2O, NH3, CO и др) и анионы (CN–, NO2–, Cl–, Br–, I–, OH– и др.).

Дентатность лиганда – это число ковалентных связей, которыми данный лиганд соединен с комплексообразователем.

Лиганды делятся на монодентатные (H2O, NH3, CO, CN–, NO2–, Cl–, Br–, I–, OH–), бидентатные (C2O42-, SO42- и др.) и полидентатные.

Например, в анионном комплексном соединении K3[Fe(CN)6]: внутренняя сфера – [Fe(CN)6]3–, внешняя сфера – 3K+, центральный атом – Fe3+, координационное число центрального атома – 6, лиганды – 6CN–, их дентатность –1 (монодентатные).

При написании формулы комплексной частицы (иона) вначале записывается символ центрального атома, затем лиганды в алфавитном порядке их символов, но первыми анионные лиганды, а затем нейтральные молекулы. Формула заключается в квадратные скобки.

В названии координационного соединения первым указывается катион (для всех типов соединений), а затем анион. Катионные и нейтральные комплексы не имеют специального окончания. В названиях анионных комплексов к названию центрального атома (комплексообразователя) добавляется окончание –ат. Степень окисления комплексообразователя указывается римской цифрой в круглых скобках.

Названия некоторых лигандов: NH3 – аммин, H2O – аква (акво), CN– – циано, Cl– – хлоро, OH– – гидроксо. Количество одинаковых лигандов в координационном соединении обозначается префиксом: 2– ди, 3– три, 4– тетра, 5– пента, 6– гекса.

В русскоязычной химической литературе допускается называть сначала анион (в именительном падеже), а затем катион (в родительном падеже).

[Ag(NH3)2]Cl диамминсеребра(I) хлорид или

K2[PtCl4] калия тетрахлороплатинат(II) или

Классификация координационных соединений

Существует несколько классификаций координационных соединений: по заряду комплексной частицы, типу лигандов, числу комплексообразователей и т. д.

В зависимости от заряда комплексной частицы координационные соединения делятся на катионные, анионные и нейтральные.

В катионных комплексах внутренняя сфера образована только нейтральными молекулами (H2O, NH3, CO и др.), или молекулами и анионами одновременно.

[Fe(H2O)6]Cl3 гексаакважалеза(III) хлорид

[Cu(NH3)4]SO4 тетраамминмеди(II) сульфат

[PtCl2(NH3)4]Cl2 тетраамминдихлороплатины(IV) хлорид

В анионных комплексах внутренняя сфера образована только анионами, или анионами и нейтральными молекулами одновременно.

K3[Fe(CN)6] калия гексацианоферрат(III)

Na[Al(OH)4] натрия тетрагидроксоалюминат(III)

Na[Al(OH)4(H2O)2] натрия диакватетрагидроксоалюминат(III)

Нейтральные (электронейтральные) комплексы образуются при одновременной координации к центральному атому анионов и молекул (иногда только молекул).

В зависимости от типа лигандов координационные соединения подразделяются на: ацидокомплексы (лигандами являются кислотные остатки CN–, NO2–, Cl–, Br–, I– и др.); аквакомплексы (лигандами являются молекулы воды); амминокомплексы (лигандами являются молекулы аммиака); гидроксокомплексы (лигандами являются OH– группы ) и т. д.

Диссоциация и ионизация координационных соединений

Катионные и анионные координационные соединения в растворе полностью диссоциируют по ионной связи на внутреннюю и внешнюю сферы:

K4[Fe(CN)6] → 4K+ +[Fe(CN)6]4–

[Ag(NH3)2]NO3 → [Ag(NH3)2]+ + NO3–

Комплексные ионы подвергаются ионизации (диссоциируют) ступенчато как слабые электролиты:

[Ag(NH3)2]+ ⇄ [Ag(NH3)]+ + NH3

Образование координационных соединений

Образование комплексных частиц (ионов) в растворах из ионов металла-комплексообразователя и лигандов происходит ступенчато:

[Ag(NH3)]+ + NH3 ⇄ [Ag(NH3)2]+

и характеризуется ступенчатыми константами образования:

Na al oh 4 диссоциация уравнение

Для характеристики устойчивости координационных соединений в растворах обычно используют общие константы образования βn, соответствующие процессу присоединения n лигандов к одному центральному атому:

Ag+ +NH3 ⇄ [Ag(NH3)]+ Na al oh 4 диссоциация уравнение

Ag+ + 2NH3 ⇄ [Ag(NH3)2]+ Na al oh 4 диссоциация уравнение

Чем больше численное значение βn, тем прочнее (устойчивее) комплексный ион.

Получение координационных соединений

Координационные соединения чаще всего получают следующими способами.

1. Взаимодействием ионов металла-комплексообразователя (обычно раствор соли данного металла) с лигандами (раствор соли, кислоты, основания и др.):

FeCl3 + 6KCN → K3[Fe(CN)6] + 3KCl

Fe3+ + 6CN– → [Fe(CN)6]3–

2. Полной или частичной заменой одних лигандов в координационном соединении на другие:

K3[Fe(SCN)6] + 6KF → K3[FeF6] + 6KSCN

[Fe(SCN)6]3– + 6F– → [FeF6]3– + 6SCN–

β6 1,70·103 1,26·1016

Новое координационное соединение образуется, если его константа образования больше константы образования исходного координационного соединения.

3.Заменой в координационном соединении металла-комплексообразователя при сохранении лигандов. Как и в предыдущем случае, данное превращение возможно, если при этом образуется более устойчивое координационное соединение.

[Zn(NH3)4]SO4 + CuSO4 → [Cu(NH3)4]SO4 + ZnSO4

[Zn(NH3)4]2+ + Cu2+ → [Cu(NH3)4]2+ + Zn2+

β4 2,51·109 1,07·1012

Экспериментальная часть

Опыт 1. Получение и разрушение гидроксокомплексов

В две пробирки налейте по 1 мл растворов солей цинка и алюминия (сульфатов, хлоридов или нитратов). В каждую из пробирок добавьте по каплям 0,1 моль/л раствор NaOH или KOH до образования осадков соответствующих гидроксидов. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет осадков.

ZnSO4 + 2NaOH → Zn(OH)2¯ + Na2SO4

AlCl3 + 3NaOH → Al(OH)3¯ + 3NaCl

Проверьте растворимость полученных осадков в 2 моль/л растворе гидроксида натрия или калия. Отметьте Ваши наблюдения. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет образовавшихся растворов.

Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]

Al(OH)3 + NaOH → Na[Al(OH)4] или Na3[Al(OH)6]

Для разрушения гидроксокомплексов в полученные растворы добавьте по каплям 2 моль/л раствор кислоты (HCl, H2SO4 или HNO3). Обратите внимание на то, что по мере добавления кислоты наблюдается помутнение растворов или образование осадков соответствующих гидроксидов, которые затем растворяются в избытке кислоты. Напишите уравнения реакций в ионно-молекулярном виде.

Видео:Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Na2[Zn(OH)4] + 2HNO3 → 2NaNO3 + Zn(OH)2¯ + 2Н2О

Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Na[Al(OH)4] + HCl → Al(OH)3¯ + NaCl ¯ + Н2О

Al(OH)3 + 3HCl → AlCl3 + 3H2O

Видео:Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Опыт 2. Получение сульфата тетраамминмеди(II) и его разрушение (качественная реакция на ион Cu2+)

Видео:Получение комплексных соединений I ЕГЭ по химииСкачать

Получение комплексных соединений I ЕГЭ по химии

Налейте в пробирку 2 мл раствора сульфата меди и добавьте по каплям 2 моль/л раствор аммиака до образования осадка сульфата гидроксомеди(II) (CuOH)2SO4. Запишите цвет образовавшегося осадка. Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

2CuSO4 + 2NH3 + 2H2O → (CuOH)2SO4 + (NH4)2SO4

Видео:Реакции ионного обменаСкачать

Реакции ионного обмена

Добавьте в пробирку концентрированный раствор аммиака до полного растворения осадка (CuOH)2SO4. Запишите цвет раствора сульфата тетраамминмеди (II). Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.

(CuOH)2SO4 + 6NH3 + (NH4)2SO4 → 2[Cu(NH3)4]SO4 + 2H2O

Полученный раствор сульфата тетраамминмеди(II) разделите на две пробирки. В первую пробирку добавьте 2 моль/л раствор серной кислоты, а во вторую – раствор сульфида натрия. Отметьте изменение цвета раствора в первой пробирке и цвет образовавшегося осадка во второй пробирке. Расставьте коэффициенты и напишите уравнения реакций в ионно-молекулярном виде. Под формулами укажите цвет окрашенных исходных веществ и продуктов реакций.

Видео:9 класс. Электролитическая диссоциация. Образование ионов.Скачать

9 класс. Электролитическая диссоциация. Образование ионов.

[Cu(NH3)4]SO4 + 2H2SO4 + 4H2O → [Cu(H2O)4]SO4 + 2(NH4)2SO4

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

[Cu(NH3)4]SO4 + Na2S → CuS + Na2SO4 + 4NH3

Опыт 3 Диссоциация комплексных соединений

В пробирку налейте 3-5 капель раствора хлорида калия и добавьте небольшое количество (на кончике шпателя) кристаллического гексанитрокобальтата(III) натрия Na3[Co(NO2)6]. Обратите внимание на образование желтого осадка K2Na[Co(NO2)6]. Данная реакция является качественной на ионы калия.

2 K+ + Na+ + [Co(NO2)6]3– → K2Na[Co(NO2)6]¯

В другую пробирку налейте 3-5 капель раствора хлорида железа (III), а затем добавьте 2-3 капли раствора тиоцианата аммония или калия. Обратите внимание на изменение окраски раствора. Данная реакция является качественной на ион Fe3+.

FeCl3 → Fe3+ + 3Cl–

Fe3+ + 6SCN– ⇄ [Fe(SCN)6]3–

Проведите соответствующие качественные реакции на ионы К+ и Fe3+ в растворе гексацианоферрата(III) калия K3[Fe(CN)6]. Отметьте Ваши наблюдения.

Какое из двух, приведенных ниже, уравнений диссоциации K3[Fe(CN)6] в водном растворе:

K3[Fe(CN)6] → 3K+ + [Fe(CN)6]3–

K3[Fe(CN)6] → 3K+ + Fe3+ + 6CN–

согласуется с Вашими наблюдениями?

Сформулируйте вывод о характере диссоциации комплексных (координационных) соединений в водных растворах.

Видео:Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.

Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:

Na al oh 4 диссоциация уравнение

Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.

Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.

Первая ступень диссоциации (отщепление одного иона водорода Н + ):

Na al oh 4 диссоциация уравнение

Константа диссоциации по первой ступени:

Na al oh 4 диссоциация уравнение

Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):

Na al oh 4 диссоциация уравнение

Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .

Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:Na al oh 4 диссоциация уравнение

Сильное двухкислотное основание Ca(OH)2 диссоциирует так:

Na al oh 4 диссоциация уравнение

Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.

Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.

Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):

Na al oh 4 диссоциация уравнение

Na al oh 4 диссоциация уравнение

Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):

Na al oh 4 диссоциация уравнение

Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .

Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.

К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.

В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .

Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:

Na al oh 4 диссоциация уравнение

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.

Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:

Na al oh 4 диссоциация уравнение

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.

Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.Na al oh 4 диссоциация уравнение

Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:

Na al oh 4 диссоциация уравнение

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .

Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):

Na al oh 4 диссоциация уравнение

Сложный катион частично диссоциирует по уравнениям:

Na al oh 4 диссоциация уравнение

Для обеих ступеней диссоциации Fe(OH)2 + .

📹 Видео

Ионные уравнения реакций. По сокращенному ионному уравнению составляем полное ионное и молекулярное.Скачать

Ионные уравнения реакций. По сокращенному ионному уравнению составляем полное ионное и молекулярное.

Расчет рН растворов сильных и слабых кислот. Химия для поступающих.Скачать

Расчет рН растворов сильных и слабых кислот. Химия для поступающих.

Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.

Реакции ионного обмена часть 4Скачать

Реакции ионного обмена часть 4
Поделиться или сохранить к себе: