Материалы портала onx.distant.ru
Состав комплексных соединений
Номенклатура комплексных соединений
Реакции образования комплексных соединений
Реакции разрушения комплексных соединений
Диссоциация комплексных соединений
Примеры решения задач
Задачи для самостоятельного решения
- Состав комплексных соединений
- Номенклатура комплексных соединений
- Реакции образования комплексных соединений
- Реакции разрушения комплексных соединений
- Диссоциация комплексных соединений
- Задачи для самостоятельного решения
- Лабораторная работа №5 Комплексные (координационные) соединения
- Экспериментальная часть
- Опыт 1. Получение и разрушение гидроксокомплексов
- Na2[Zn(OH)4] + 2HNO3 → 2NaNO3 + Zn(OH)2¯ + 2Н2О
- Na[Al(OH)4] + HCl → Al(OH)3¯ + NaCl ¯ + Н2О
- Опыт 2. Получение сульфата тетраамминмеди(II) и его разрушение (качественная реакция на ион Cu2+)
- Налейте в пробирку 2 мл раствора сульфата меди и добавьте по каплям 2 моль/л раствор аммиака до образования осадка сульфата гидроксомеди(II) (CuOH)2SO4. Запишите цвет образовавшегося осадка. Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
- 2CuSO4 + 2NH3 + 2H2O → (CuOH)2SO4 + (NH4)2SO4
- Добавьте в пробирку концентрированный раствор аммиака до полного растворения осадка (CuOH)2SO4. Запишите цвет раствора сульфата тетраамминмеди (II). Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
- [Cu(NH3)4]SO4 + 2H2SO4 + 4H2O → [Cu(H2O)4]SO4 + 2(NH4)2SO4
- [Cu(NH3)4]SO4 + Na2S → CuS + Na2SO4 + 4NH3
- Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах
- 🎦 Видео
Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Состав комплексных соединений
Рис. 1. Состав комплексного соединения
Комплексное соединение, рисунок 1, состоит из внутренней и внешней сферы. Центральная частица, вокруг которой расположены окружающие ее лиганды, называется комплексообразователем. Число лигандов комплексообразователя называется координационным числом.
Видео:Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать
Номенклатура комплексных соединений
Комплексное соединение может состоять из комплексного катиона, комплексного аниона или может быть нейтральным.
Соединения с комплексными катионами . Вначале называют внешнесферный анион, затем перечисляют лиганды, затем называют комплексообразователь в родительном падеже (ему дается русское название данного элемента). После названия комплексообразователя в скобках римской цифрой указывается его степень окисления.
К латинскому названию анионного лиганда добавляется окончание “о” (F — — фторо, Cl — -хлоро, ОН — — гидроксо, CN — — циано и т.д). Аммиак обозначают термином “аммин”, СО – карбонил, NO – нитрозил, H2O – аква.
Число одинаковых лигандов называют греческим числительным: 2 –ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса, 7 – гепта и т.д.
Вначале перечисляют лиганды анионные, затем нейтральные, затем катионные. Например,
[Pt(NH3)5Cl]Cl3 – хлорид хлоропентаамминплатины (IV) .
Если в комплексе имеются несколько лигандов одинакового знака заряда, то они называются в алфавитном порядке:
Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды, затем комплексообразователь (ему дается латинское название и к названию добавляется окончание “ат”). После названия комплексообразователя указывается его степень окисления. Затем в родительном падеже называется внешнесферный катион.
Na2[Zn(OH)4] – тетрагидроксоцинкат (II) натрия;
K4[Fe(CN)6] – гексацианоферрат (II) калия;
K2[СuCl4] – тетрахлорокупрат (II) калия.
Соединения без внешней сферы. Вначале называют лиганды, затем комплексообразователь в именительном падеже с указанием его степени окисления. Все название пишется слитно.
[Ni(CО)4] – тетракарбонилникель (0);
Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать
Реакции образования комплексных соединений
Комплексные соединения обычно получают действием избытка лигандов на содержащее комплексообразователь соединение. Координационное число, как правило, в 2 раза больше степени окисления комплексообразователя. Из этого правила бывают, однако, исключения.
Образование комплексных солей.
Если комплексообразователем является Fe 2+ или Fe 3+ , то координационные числа в обоих случаях равны шести:
Координационные числа ртути и меди, как правило, равны четырем:
Для большинства аква- и амминных комплексов ионов d-элементов координационное число равно шести:
Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать
Реакции разрушения комплексных соединений
Разрушение комплексных соединений происходит в результате:
- образования малорастворимого соединения с комплексообразователем:
- образования более прочного комплексного соединения с комплексообразователем или с лигандом:
- действия любой сильной кислоты на гидрокомплексы; в этом случае образуется соль и вода:
Видео:Ионные уравнения реакций. Как составлять полные и сокращенные уравненияСкачать
Диссоциация комплексных соединений
Комплексные соединения в водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы. В то же время комплексный ион диссоциирует в незначительной степени как ассоциированный электролит. Количественной характеристикой диссоциации внутренней сферы в растворе является константа нестойкости, представляющая собой константу равновесия процесса диссоциации комплексного иона.
Например , в растворе комплексное соединение [Ni(NH3)6]SO4 диссоциирует следующим образом:
Для комплексного иона [Ni(NH3)6] 2+ , диссоциирующего по уравнению
константа равновесия процесса диссоциации носит название константы нестойкости Кн. Для рассматриваемого процесса Кн равна
Кн = [Ni 2+ ]·[NH3] 6 / [[Ni(NH3)6] 2+ ] (1)
Величина, обратная Кн, называется константой устойчивости:
Она представляет собой константу равновесия процесса образования комплексного иона:
Константа нестойкости Кн связана с изменением энергии Гиббса процесса диссоциации комплекса уравнением:
ΔGT о = — RTln Кн (3)
Примеры решения задач:
Задача 1. Вычислите:
1) Концентрацию ионов NO3 — в 0,01 М растворе [Ag(NH3)2]NO3.
2) Концентрацию Ag + в 0,01 М растворе [Ag(NH3)2]NO3, содержащем 2 моль/л избыточного аммиака,
если Кн[Ag(NH3)2] + = 5,7× 10 — 8 при 298 К.
3) Величину ΔG o 298 процесса диссоциации комплексного иона.
[NO3 — ] = 0,01М, поскольку комплекс диссоциирует как сильный электролит на комплексный ион и ионы внешней сферы.
2) Комплексный ион диссоциирует незначительно:
Положение равновесия комплексного иона в присутствии избытка NH3 еще больше смещено влево.
Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Ag + и 2x моль/л аммиака. Суммарная концентрация аммиака равна (2x+2) моль/л. Концентрация недиссоциированного комплексного иона [Ag(NH3)2] + составляет: (0,01–x) моль/л.
Концентрация аммиака, связанная с диссоциацией комплексного иона, ничтожно мала по сравнению с избытком аммиака. Доля комплексного иона, подвергшегося диссоциации, также ничтожно мала. Значит,
Следовательно, [Ag + ] = 1,43× 10 — 10 моль/л.
Константа нестойкости связана с изменением энергии Гиббса процесса диссоциации [Ag(NH3)2] + уравнением:
Значит, при Т = 298 К получаем:
ΔG о 298 = — 8,314× 298× ln5,7× 10 — 8 = 41326 Дж = 413,3 кДж.
Задача 2. Произойдет ли осаждение AgCl при сливании 0,01М раствора [Ag(NH3)2]NO3, содержащего 2 моль/л избыточного NH3, с равным объемом 0,5М раствора KCl, если при 298 К ПР(AgCl) = 1,73× 10 — 10 , Кн.[Ag(NH3)2] + = 5,7× 10 — 8 .
Решение. Осадок выпадет при условии: [Ag + ][Сl — ] > ПР(AgCl), т.е. если произведение концентраций ионов Ag + и Сl — в растворе будет больше ПР, то раствор окажется пересыщенным и из него будет выпадать осадок.
После смешения равных объемов растворов концентрации [Ag(NH3)2]NO3, NH3 и KCl уменьшатся в 2 раза и станут равными 5× 10 -3 , 1 и 0,25 М соответственно.
Найдем концентрацию [Ag + ] тем же способом, что и в предыдущей задаче,
откуда x = 2,85× 10 — 10 .
Значит, [Ag + ] = 2,85× 10 — 10 моль/л, а [Сl — ] = 0,25 моль/л.
Следовательно, произведение концентраций ионов равно:
[Ag + ][Сl — ] = 2,85× 10 — 10 × 0,25 = 7,1× 10 — 11 (моль/л) 2 .
Поскольку [Ag + ][Сl — ] = 7,1× 10 — 11 — 10 , то осадок не выпадет.
Задача 3. При какой концентрации ионов S 2- начнется выпадение осадка CdS из 0,6М раствора Na2[Cd(CN)4], содержащего 0,04 моль/л избыточного NaCN, если ПР(CdS) = 7,9× 10 — 27 , Кн[Cd(CN)4] 2- = 7,8× 10 — 18 .
Решение. Осадок выпадет при условии: [Cd 2+ ][S 2- ] > ПР(CdS), т.е. если произведение концентраций ионов Cd 2+ и S 2- в растворе будет больше ПР. Следовательно, выпадение осадка начнется при [S 2- ] > ПР(CdS):[Cd 2+ ].
Комплексный ион диссоциирует незначительно:
[Cd(CN)4] 2- → Cd 2+ + 4CN —
Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Cd 2+ и 4x моль/л ионов CN — . Суммарная концентрация ионов CN — равна (4x + 0,04) моль/л. Концентрация недиссоциированного комплексного иона [Cd(CN)4] 2- составляет: (0,6 – x) моль/л.
Кн[Cd(CN)4] 2- = [Cd 2+ ] · [CN — ] 4 / [[Cd(CN)4] 2- ]
Следовательно, [Cd 2+ ] = 1,8·10 — 12 моль/л.
Выпадение осадка начнется при [S 2- ] > 7,9·10 — 27 : 1,8·10 — 12 > 4,39·10 — 15 моль/л.
Видео:Химия | Молекулярные и ионные уравненияСкачать
Задачи для самостоятельного решения
1. Назовите следующие комплексные соединения:
Na2[Pt(CN)4Cl2] – дихлоротетрацианоплатинат (IV) натрия;
2. Назовите следующие комплексные соединения
[Ni(NH3)6][PtCl4] – тетрахлороплатинат (II) гексаамминникеля (II).
3. Составьте уравнение химической реакции:
4. Составьте уравнение химической реакции:
5 . Составьте уравнение химической реакции:
6. Составьте уравнение химической реакции:
7. Составьте уравнение химической реакции:
Видео:Комплексные соединения. 1 часть. 11 класс.Скачать
Лабораторная работа №5 Комплексные (координационные) соединения
Лабораторная работа №5
Комплексные (координационные) соединения
Комплексные (координационные) соединения – это соединения, в которых хотя бы одна из ковалентных связей образована по донорно-акцепторному механизму.
Все координационные соединения состоят из внутренней сферы (комплексной частицы), а в случае катионных и анионных координационных соединений – и из внешней сферы. Между внутренней и внешней сферой координационного соединения связь ионная.
Внутренняя сфера (комплексная частица) состоит из центрального атома (атома металла-комплексообразователя) и лигандов.
В формуле комплексных соединений внутренняя сфера заключается в квадратные скобки. Внутренняя сфера не имеет заряда в нейтральных комплексах, положительно заряжена в катионных, а отрицательно – в анионных координационных соединениях. Заряд внутренней сферы – алгебраическая сумма зарядов центрального атома и лигандов.
Центральный атом – это чаще всего ион d — элемента: Ag+, Cu2+, Hg2+, Zn2+, Ni2+, Fe3+, Pt4+ и др.
Координационное число центрального атома – число ковалентных связей между комплексообразователем и лигандами.
Как правило, координационное число в два раза превышает заряд центрального атома. В большинстве комплексных соединений координационные числа равны 6 и 4, реже 2, 3, 5 и 7.
Лиганды – анионы или молекулы, связанные с центральным атомом ковалентными связями, образованными по донорно-акцепторному механизму. Лигандами могут быть полярные молекулы (H2O, NH3, CO и др) и анионы (CN–, NO2–, Cl–, Br–, I–, OH– и др.).
Дентатность лиганда – это число ковалентных связей, которыми данный лиганд соединен с комплексообразователем.
Лиганды делятся на монодентатные (H2O, NH3, CO, CN–, NO2–, Cl–, Br–, I–, OH–), бидентатные (C2O42-, SO42- и др.) и полидентатные.
Например, в анионном комплексном соединении K3[Fe(CN)6]: внутренняя сфера – [Fe(CN)6]3–, внешняя сфера – 3K+, центральный атом – Fe3+, координационное число центрального атома – 6, лиганды – 6CN–, их дентатность –1 (монодентатные).
При написании формулы комплексной частицы (иона) вначале записывается символ центрального атома, затем лиганды в алфавитном порядке их символов, но первыми анионные лиганды, а затем нейтральные молекулы. Формула заключается в квадратные скобки.
В названии координационного соединения первым указывается катион (для всех типов соединений), а затем анион. Катионные и нейтральные комплексы не имеют специального окончания. В названиях анионных комплексов к названию центрального атома (комплексообразователя) добавляется окончание –ат. Степень окисления комплексообразователя указывается римской цифрой в круглых скобках.
Названия некоторых лигандов: NH3 – аммин, H2O – аква (акво), CN– – циано, Cl– – хлоро, OH– – гидроксо. Количество одинаковых лигандов в координационном соединении обозначается префиксом: 2– ди, 3– три, 4– тетра, 5– пента, 6– гекса.
В русскоязычной химической литературе допускается называть сначала анион (в именительном падеже), а затем катион (в родительном падеже).
[Ag(NH3)2]Cl диамминсеребра(I) хлорид или
K2[PtCl4] калия тетрахлороплатинат(II) или
Классификация координационных соединений
Существует несколько классификаций координационных соединений: по заряду комплексной частицы, типу лигандов, числу комплексообразователей и т. д.
В зависимости от заряда комплексной частицы координационные соединения делятся на катионные, анионные и нейтральные.
В катионных комплексах внутренняя сфера образована только нейтральными молекулами (H2O, NH3, CO и др.), или молекулами и анионами одновременно.
[Fe(H2O)6]Cl3 гексаакважалеза(III) хлорид
[Cu(NH3)4]SO4 тетраамминмеди(II) сульфат
[PtCl2(NH3)4]Cl2 тетраамминдихлороплатины(IV) хлорид
В анионных комплексах внутренняя сфера образована только анионами, или анионами и нейтральными молекулами одновременно.
K3[Fe(CN)6] калия гексацианоферрат(III)
Na[Al(OH)4] натрия тетрагидроксоалюминат(III)
Na[Al(OH)4(H2O)2] натрия диакватетрагидроксоалюминат(III)
Нейтральные (электронейтральные) комплексы образуются при одновременной координации к центральному атому анионов и молекул (иногда только молекул).
В зависимости от типа лигандов координационные соединения подразделяются на: ацидокомплексы (лигандами являются кислотные остатки CN–, NO2–, Cl–, Br–, I– и др.); аквакомплексы (лигандами являются молекулы воды); амминокомплексы (лигандами являются молекулы аммиака); гидроксокомплексы (лигандами являются OH– группы ) и т. д.
Диссоциация и ионизация координационных соединений
Катионные и анионные координационные соединения в растворе полностью диссоциируют по ионной связи на внутреннюю и внешнюю сферы:
K4[Fe(CN)6] → 4K+ +[Fe(CN)6]4–
[Ag(NH3)2]NO3 → [Ag(NH3)2]+ + NO3–
Комплексные ионы подвергаются ионизации (диссоциируют) ступенчато как слабые электролиты:
[Ag(NH3)2]+ ⇄ [Ag(NH3)]+ + NH3
Образование координационных соединений
Образование комплексных частиц (ионов) в растворах из ионов металла-комплексообразователя и лигандов происходит ступенчато:
[Ag(NH3)]+ + NH3 ⇄ [Ag(NH3)2]+
и характеризуется ступенчатыми константами образования:
Для характеристики устойчивости координационных соединений в растворах обычно используют общие константы образования βn, соответствующие процессу присоединения n лигандов к одному центральному атому:
Ag+ +NH3 ⇄ [Ag(NH3)]+
Ag+ + 2NH3 ⇄ [Ag(NH3)2]+
Чем больше численное значение βn, тем прочнее (устойчивее) комплексный ион.
Получение координационных соединений
Координационные соединения чаще всего получают следующими способами.
1. Взаимодействием ионов металла-комплексообразователя (обычно раствор соли данного металла) с лигандами (раствор соли, кислоты, основания и др.):
FeCl3 + 6KCN → K3[Fe(CN)6] + 3KCl
Fe3+ + 6CN– → [Fe(CN)6]3–
2. Полной или частичной заменой одних лигандов в координационном соединении на другие:
K3[Fe(SCN)6] + 6KF → K3[FeF6] + 6KSCN
[Fe(SCN)6]3– + 6F– → [FeF6]3– + 6SCN–
β6 1,70·103 1,26·1016
Новое координационное соединение образуется, если его константа образования больше константы образования исходного координационного соединения.
3.Заменой в координационном соединении металла-комплексообразователя при сохранении лигандов. Как и в предыдущем случае, данное превращение возможно, если при этом образуется более устойчивое координационное соединение.
[Zn(NH3)4]SO4 + CuSO4 → [Cu(NH3)4]SO4 + ZnSO4
[Zn(NH3)4]2+ + Cu2+ → [Cu(NH3)4]2+ + Zn2+
β4 2,51·109 1,07·1012
Экспериментальная часть
Опыт 1. Получение и разрушение гидроксокомплексов
В две пробирки налейте по 1 мл растворов солей цинка и алюминия (сульфатов, хлоридов или нитратов). В каждую из пробирок добавьте по каплям 0,1 моль/л раствор NaOH или KOH до образования осадков соответствующих гидроксидов. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет осадков.
ZnSO4 + 2NaOH → Zn(OH)2¯ + Na2SO4
AlCl3 + 3NaOH → Al(OH)3¯ + 3NaCl
Проверьте растворимость полученных осадков в 2 моль/л растворе гидроксида натрия или калия. Отметьте Ваши наблюдения. Напишите уравнения реакций в ионно-молекулярном виде, укажите цвет образовавшихся растворов.
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4]
Al(OH)3 + NaOH → Na[Al(OH)4] или Na3[Al(OH)6]
Для разрушения гидроксокомплексов в полученные растворы добавьте по каплям 2 моль/л раствор кислоты (HCl, H2SO4 или HNO3). Обратите внимание на то, что по мере добавления кислоты наблюдается помутнение растворов или образование осадков соответствующих гидроксидов, которые затем растворяются в избытке кислоты. Напишите уравнения реакций в ионно-молекулярном виде.
Видео:Решение цепочек превращений по химииСкачать
Na2[Zn(OH)4] + 2HNO3 → 2NaNO3 + Zn(OH)2¯ + 2Н2О
Zn(OH)2 + 2HNO3 → Zn(NO3)2 + 2H2O
Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Na[Al(OH)4] + HCl → Al(OH)3¯ + NaCl ¯ + Н2О
Al(OH)3 + 3HCl → AlCl3 + 3H2O
Видео:Получение комплексных соединений I ЕГЭ по химииСкачать
Опыт 2. Получение сульфата тетраамминмеди(II) и его разрушение (качественная реакция на ион Cu2+)
Видео:Реакции ионного обменаСкачать
Налейте в пробирку 2 мл раствора сульфата меди и добавьте по каплям 2 моль/л раствор аммиака до образования осадка сульфата гидроксомеди(II) (CuOH)2SO4. Запишите цвет образовавшегося осадка. Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
Видео:Химия 9 класс — Как определять Степень Окисления?Скачать
2CuSO4 + 2NH3 + 2H2O → (CuOH)2SO4 + (NH4)2SO4
Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать
Добавьте в пробирку концентрированный раствор аммиака до полного растворения осадка (CuOH)2SO4. Запишите цвет раствора сульфата тетраамминмеди (II). Расставьте коэффициенты и напишите уравнение реакции в ионно-молекулярном виде.
(CuOH)2SO4 + 6NH3 + (NH4)2SO4 → 2[Cu(NH3)4]SO4 + 2H2O
Полученный раствор сульфата тетраамминмеди(II) разделите на две пробирки. В первую пробирку добавьте 2 моль/л раствор серной кислоты, а во вторую – раствор сульфида натрия. Отметьте изменение цвета раствора в первой пробирке и цвет образовавшегося осадка во второй пробирке. Расставьте коэффициенты и напишите уравнения реакций в ионно-молекулярном виде. Под формулами укажите цвет окрашенных исходных веществ и продуктов реакций.
Видео:Расчет рН растворов сильных и слабых кислот. Химия для поступающих.Скачать
[Cu(NH3)4]SO4 + 2H2SO4 + 4H2O → [Cu(H2O)4]SO4 + 2(NH4)2SO4
Видео:Ионные уравнения реакций. По сокращенному ионному уравнению составляем полное ионное и молекулярное.Скачать
[Cu(NH3)4]SO4 + Na2S → CuS + Na2SO4 + 4NH3
Опыт 3 Диссоциация комплексных соединений
В пробирку налейте 3-5 капель раствора хлорида калия и добавьте небольшое количество (на кончике шпателя) кристаллического гексанитрокобальтата(III) натрия Na3[Co(NO2)6]. Обратите внимание на образование желтого осадка K2Na[Co(NO2)6]. Данная реакция является качественной на ионы калия.
2 K+ + Na+ + [Co(NO2)6]3– → K2Na[Co(NO2)6]¯
В другую пробирку налейте 3-5 капель раствора хлорида железа (III), а затем добавьте 2-3 капли раствора тиоцианата аммония или калия. Обратите внимание на изменение окраски раствора. Данная реакция является качественной на ион Fe3+.
FeCl3 → Fe3+ + 3Cl–
Fe3+ + 6SCN– ⇄ [Fe(SCN)6]3–
Проведите соответствующие качественные реакции на ионы К+ и Fe3+ в растворе гексацианоферрата(III) калия K3[Fe(CN)6]. Отметьте Ваши наблюдения.
Какое из двух, приведенных ниже, уравнений диссоциации K3[Fe(CN)6] в водном растворе:
K3[Fe(CN)6] → 3K+ + [Fe(CN)6]3–
K3[Fe(CN)6] → 3K+ + Fe3+ + 6CN–
согласуется с Вашими наблюдениями?
Сформулируйте вывод о характере диссоциации комплексных (координационных) соединений в водных растворах.
Видео:Электролиз. 10 класс.Скачать
Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах
Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:
Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.
Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.
Первая ступень диссоциации (отщепление одного иона водорода Н + ):
Константа диссоциации по первой ступени:
Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):
Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).
Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .
Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:
Сильное двухкислотное основание Ca(OH)2 диссоциирует так:
Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.
Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.
Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):
Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):
Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .
Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.
Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.
Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.
К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.
В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .
Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:
Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.
Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:
Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.
Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.
Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:
Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .
Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):
Сложный катион частично диссоциирует по уравнениям:
Для обеих ступеней диссоциации Fe(OH)2 + .
🎦 Видео
Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать
9 класс. Электролитическая диссоциация. Образование ионов.Скачать
Реакции ионного обмена. 9 класс.Скачать
Реакции ионного обмена часть 4Скачать