Дадим ряд необходимых определений.
Система линейных уравнений называется неоднородной, если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее свободные члены равны нулю.
Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.
Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она решений не имеет.
Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.
Рассмотрим неоднородную систему линейных алгебраических уравнений, имеющую при n = m следующий общий вид:
Главной матрицей A системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных:
Определитель главной матрицы системы называется главным определителем и обозначается ∆.
Вспомогательный определитель ∆ i получается из главного определителя путем замены i -го столбца на столбец свободных членов .
Теорема 1.1 (теорема Крамера). Если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:
Если главный определитель ∆=0, то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей).
В свете приведенных выше определений , теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ∆ i = 0), либо несовместной (при отличии хотя бы одного из ∆ i от нуля).
После этого следует провести проверку полученного решения.
Пример 1.4. Решить систему методом Крамера
Решение. Так как главный определитель системы
отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители
Воспользуемся формулами Крамера (1.6):
Пример 1.5. Данные дневной выручки молочного цеха от реализации молока, сливочного масла и творога за три дня продаж (на 2017 год) занесены в таблицу 1.4.
Определить стоимость 1 единицы продукции молокоцеха каждого вида.
Решение. Обозначим через x – стоимость 1 литра молока, y – 1 кг сливочного масла, z – 1 кг творога. Тогда, учитывая данные таблицы 1.4, выручку молочного цеха каждого из трех дней реализации можно отобразить следующей системой:
Решим систему методом Крамера. Найдем главный определитель системы по формуле (1.2):
Так как он отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители с помощью формулы (1.2):
По формулам Крамера (1.6) имеем:
Вернувшись к обозначениям, видим, что стоимость 1 литра молока равна 44 рубля, 1 кг масла – 540 рублей, 1 кг творога – 176 рублей
Примечание. Как видно, процесс вычисления определителей вручную с помощью калькулятора трудоемок, поэтому на практике используют персональный компьютер. Так, для решения систем линейных алгебраических уравнений методом Крамера в MS Excel высчитывают ее главный и вспомогательные определители с использованием функции МОПРЕД( ), где аргументом является диапазон ячеек и элементы матрицы, определитель которой находится.
В MathCAD для нахождения определителя пользуются палитрой оператора Matrix
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Метод Крамера для решения СЛАУ
В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.
Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.
Видео:Решение системы трех уравнений по формулам КрамераСкачать
Метод Крамера — вывод формул
Найти решение системы линейных уравнений вида:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,
a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,
b 1 , b 2 , . . . , b n — свободные члены.
Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.
Матричный вид записи такой системы линейных уравнений:
A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;
B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;
X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.
После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.
Метод Крамера основан на 2-х свойствах определителя матрицы:
- Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q
- Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:
a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0
p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q
Приступаем к нахождению неизвестной переменной x 1 :
- Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :
A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n
- Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:
x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n
Если воспользоваться свойствами определителя, то получится:
А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0
A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
Предыдущее равенство будет иметь следующий вид:
x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .
x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A
Таким же образом находим все оставшиеся неизвестные переменные.
∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,
∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .
то получаются формулы для нахождения неизвестных переменных по методу Крамера:
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .
Видео:Решение системы уравнений методом Крамера.Скачать
Алгоритм решения СЛАУ методом Крамера
- Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
- Найти определители
∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n
Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.
- Вычислить неизвестные переменные при помощи формул:
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .
- Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.
Видео:Решение системы уравнений методом Крамера 2x2Скачать
Примеры решения СЛАУ методом Крамера
Найти решение неоднородной системы линейных уравнений методом Крамера:
3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2
Основная матрица представлена в виде 3 — 2 2 3 .
Мы можем вычислить ее определитель по формуле:
a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13
Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3
По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:
Находим эти определители:
∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2
∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3
Находим неизвестные переменные по следующим формулам
x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆
x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2
x 2 = ∆ x 2 ∆ = 3 13 = 1 3
Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:
3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2
Оба уравнения превращаются в тождества, поэтому решение верное.
Ответ: x 1 = 1 2 , x 2 = 1 3
Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.
Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:
2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5
За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .
Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:
x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5
С этого момента основную матрицу хорошо видно:
1 2 1 3 — 1 — 1 — 2 2 3
Вычисляем ее определитель:
∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11
Записываем определители и вычисляем их:
∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0
∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22
∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33
Находим неизвестные переменные по формулам:
x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .
x = ∆ x ∆ = 0 — 11 = 0
y = ∆ y ∆ = 22 — 11 = — 2
z = ∆ z ∆ = — 33 — 11 = 3
Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :
1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5
Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.
Ответ: x = 0 , y = — 2 , z = 3
Видео:2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать
Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.
Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:
- Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
- Для каждой переменной $x_i$($i=overline$) необходимо составить определитель $Delta_$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
- Найти значения неизвестных по формуле $x_i=frac<Delta_<x_>>$ ($i=overline$).
Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.
Матрица системы такова: $ A=left( begin 3 & 2\ -1 & 5 end right)$. Определитель этой матрицы:
$$Delta=left| begin 3 & 2\ -1 & 5 endright|=3cdot 5-2cdot(-1)=17.$$
Как вычисляется определитель второго порядка можете глянуть здесь.
Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_$ и $Delta_$. Определитель $Delta_$ получаем из определителя $Delta=left| begin 3 & 2\ -1 & 5 endright|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin -11\ 15endright)$:
Аналогично, заменяя второй столбец в $Delta=left|begin3&2\-1&5endright|$ столбцом свободных членов, получим:
Теперь можно найти значения неизвестных $x_1$ и $x_2$.
В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:
Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.
$$Delta=left| begin 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 endright|=4+2+2-3=5.$$
Как вычисляется определитель третьего порядка можете глянуть здесь.
Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_$:
$$ Delta_=left| begin 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 endright|=6-4-4+7=5. $$
Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_$:
$$ Delta_=left| begin 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 endright|=-14+6+6-7-9+8=-10. $$
Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_$:
$$ Delta_=left| begin 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 endright|=-8-7-6+6=-15. $$
Учитывая все вышеизложенное, имеем:
Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:
Проверка пройдена, решение системы уравнений методом Крамера найдено верно.
Решить СЛАУ $left <begin& 2x_1+3x_2-x_3=15;\ & -9x_1-2x_2+5x_3=-7. endright.$ используя метод Крамера.
Матрица системы $ left( begin 2 & 3 & -1\ -9 & -2 & 5 end right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:
Теперь матрица системы $ left( begin 2 & 3 \ -9 & -2 end right) $ стала квадратной, и определитель её $Delta=left| begin 2 & 3\ -9 & -2 endright|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:
Ответ можно записать в таком виде: $left <begin& x_1=frac;\ & x_2=frac;\ & x_3in R. endright.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.
Матрица системы $left(begin 1 & -5 & -1 & -2 & 3 \ 2 & -6 & 1 & -4 & -2 \ -1 & 4 & 5 & -3 & 0 endright)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:
Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
🔍 Видео
Решение систем линейных алгебраических уравнений методом Крамера.Скачать
Решение системы уравнений методом Крамера 4x4Скачать
Решение систем уравнений. Метод Крамера для системы линейных уравнений с двумя неизвестными.Скачать
Решение системы уравнений методом ГауссаСкачать
Решение системы уравнений методом обратной матрицы.Скачать
10. Метод Крамера решения систем линейных уравнений.Скачать
Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать
Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Матричный метод решения систем уравненийСкачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать
Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Система 4x4. Решение по правилу Крамера.Скачать