Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Программированию нельзя научить, можно только научится
Главная » Уроки по Численным методам » Урок 14. Решение систем линейных уравнений (СЛУ). Теорема Кронекера-Капелли. Решение СЛУ с помощью матричных уравнений
Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Урок 14. Решение систем линейных уравнений (СЛУ). Теорема Кронекера-Капелли. Решение СЛУ с помощью матричных уравнений
Видео:Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать
Система линейных уравнений:
(1)
Здесь и (i =1..m, j=1..n) — заданные, а — неизвестные действительные числа. Матричной записью системы линейных уравнений называется выражение вида: =, или кратко: = (2), где:
=
=
=
столбец свободных членов
Упорядоченная совокупность n вещественных чисел (c1, c2. cn) называется решением системы(1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2. xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2. cn)T такой, что AC = B.
СЛУ называется совместной,или разрешимой, если она имеет, по крайней мере, одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений. Матрица , образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Вопрос о совместности системы (1) решается следующей теоремой.
Видео:14. Метод Гаусса решения систем линейных уравнений ( бесконечное множество решений ). Часть 3Скачать
Теорема Кронекера-Капелли
Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.
Система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.
Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.
Пример. Исследовать систему линейных уравнений
Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований вычислим одновременно ранги обеих матриц.
Далее умножим вторую строку на -2 и сложим с третьей, а затем сложим третью строку с последней. Имеем . Ранг матрицы системы =3, так как матрица имеет три ненулевых строки, а ранг расширенной матрицы =4. Тогда согласно теореме Кронекера-Капелли система не имеет решений.
Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, — так называемые системы крамеровского типа: a11 x1 + a12 x2 +. + a1n xn = b1, a21 x1 + a22 x2 +. + a2n xn = b2, (3) . . . . . . an1 x1 + an1 x2 +. + ann xn = bn.
Системы (3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Матричный метод
Если матрица А системы линейных уравнений невырожденная, т.е. det A=0, то матрица А имеет обратную, и решение системы (3) совпадает с вектором . Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.
Видео:12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
Задание 1: Решить систему уравнений матричным способом в Excel
Ход решения:
Сначала надо записать систему в матричном виде и ввести ее на лист Excel:
, здесь ,
Затем надо с помощью Excel найти обратную матрицу для матрицы А.
Далее полученную матрицу нужно умножить на матрицу В.
В результате получим ответ:
Видео:Решение системы уравнений методом ГауссаСкачать
Задание 2: Самостоятельно решить матричным способом систему уравнений
Система m линейных уравнений c n неизвестными имеет вид:
(2.1)
Здесь – коэффициенты системы, – свободные члены, а — неизвестные вещественные числа. Используя понятие произведения матриц, можно переписать систему (2.1) в матричном виде:
где A = (аij) — матрица, состоящая из коэффициентов при неизвестных системы (2.1), которая называется матрицей системы, X = (x1, x2. xn) T , B = (b1, b2. bm) T — векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.
Система называется однородной, если все ее свободные члены равны нулю: bi=0 для всех i.
Если хотя бы один из свободных членов отличен от нуля, система называется неоднородной.
Совокупность чисел называется решениемсистемы (2.1), если после замены неизвестных числами соответственно каждое из уравнений системы превращается в верное равенство
Система (2.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
= ,
образованная путем приписывания справа к матрице столбца свободных членов, называется расширенной матрицей системы.
Теорема Кронекера- Капелли.Система линейных уравнений (2.1) совместна тогда и только тогда, когда ранги матрицисовпадают, т.е. .
Для множества решений системы (2.1) имеются три возможности:
1) Если , решений нет. В этом случае система несовместна.
2) Если cистема имеет единственное решение. В этом случае система называется определенной.
3) Если cистема имеет бесчисленное множество решений. В этом случае система называется неопределенной.
Рассмотрим более подробно случай неопределенной системы. Предположим, что базисный минор матрицы находится в левом верхнем углу расширенной матрицы (всегда можно перенумеровать неизвестные и поменять местами строки, чтобы это было верно). Если ранг расширенной матрицы системы равен r, то первые r ее строк являются базисными. По теореме о базисном миноре каждая из строк расширенной матрицы, начиная с (r+1)-ой строки, является линейной комбинацией первых r строк этой матрицы. Это означает, что каждое из уравнений системы (2.1), начиная с (r+1)-го уравнения, является линейной комбинацией первых r уравнений этой системы. Придавая неизвестным совершенно произвольные значения, достаточно найти r неизвестных из первых r уравнений системы. Таким образом, в случае неопределенной системы переменных, которые называются базисными переменными, выражаются через ( ) переменных, которые называются свободными переменными.
Универсальным методом решения систем линейных уравнений является метод Гаусса, или метод исключения неизвестных. В частном случае, когда матрица системы квадратная и ее определитель отличен от нуля det( ) , можно использовать для нахождения решения либо метод Крамера, либо матричный метод.
Пример 2.1. Исследовать систему уравнений на совместность:
Решение.Выписываем расширенную матрицу системы:
= .
Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу = 7 ¹ 0; содержащие его миноры третьего порядка равны нулю:
M¢3 = = 0, M²3 = = 0.
Следовательно, ранг основной матрицы системы равен 2, т.е. r(A)=2. Для вычисления ранга расширенной матрицы `A рассмотрим окаймляющий минор
= = -35 ¹ 0,
значит, ранг расширенной матрицы r( ) = 3. Поскольку r(A) ¹ r( ), то система несовместна.
Дата добавления: 2015-09-29 ; просмотров: 3100 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:Базисные решения систем линейных уравнений (01)Скачать
Теорема Кронекера-Капелли
Совместная система линейных уравнений имеет единственное решение, если ранг этой системы равен количеству переменных.
Совместная система линейных уравнений имеет бесконечное множество решений, если ранг этой системы меньше количества переменных.
Пример №1 . Исследовать систему алгебраических уравнений (без непосредственного решения системы) с помощью теоремы Кронекера-Капелли. Запишем систему в виде:
Для удобства вычислений поменяем строки местами:
Добавим 2-ую строку к 1-ой:
Добавим 3-ую строку к 2-ой:
Умножим 3-ую строку на (2). Добавим 4-ую строку к 3-ой:
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Добавим 2-ую строку к 1-ой:
Это соответствует системе: -3x2 + 9x3 = 6 -4x1 + 5x2 + 7x3 — 10x4 = 0 За базисные переменные примем x1 и x2. Тогда свободные x3,x4. Ранг основной матрицы равен 2. Ранг расширенной матрицы тоже равен 2. Система совместна и имеет бесконечное множество решений.
Пример №2 . Запишем систему в виде:
Для удобства вычислений поменяем строки местами:
Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
Умножим 2-ую строку на (2). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Умножим 3-ую строку на (3). Умножим 4-ую строку на (-2). Добавим 4-ую строку к 3-ой:
Добавим 2-ую строку к 1-ой:
Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Добавим 2-ую строку к 1-ой:
3x2 -2x3 – 3x4 = 10 3x1 -x2 -2x3 = 1 Необходимо переменные x3,x4 принять в качестве свободных переменных и через них выразить базисные – x1, x2. Ранг основной матрицы равен 2. Ранг расширенной матрицы тоже равен 2. Система совместна и имеет бесконечное множество решений.
Пример №3 . Дана система линейных уравнений у которой число уравнений равно числу неизвестных. При каком условии эта система имеет единственное решение? Ответ: Система имеет единственное решение, если ранг этой системы будет равен количеству переменных.