Методы решения сложных логарифмических уравнений

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Содержание
  1. Уравнения вида logaf(x) = logag(x)
  2. Уравнения, требующие предварительных преобразований
  3. Логарифмические уравнения с заменой переменных
  4. Логарифмирование уравнений
  5. Переход от логарифмических неравенств к нелогарифмическим
  6. Логарифмические уравнения и системы
  7. п.1. Методы решения логарифмических уравнений
  8. п.2. Решение уравнений вида (log_a f(x)=log_a g(x))
  9. п.3. Решение уравнений вида (log_ f(x)=log_ g(x)) Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение. Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней. Например: Решим уравнение (log_(x^2-4)=log_(2-x)) Найдем ОДЗ в явном виде: ( begin x^2-4gt 0\ 2-xgt 0\ x+5gt 0\ x+5ne 1 end Rightarrow begin xlt -2cup xgt 2\ xlt 2\ xgt -5\ xne -4 end Rightarrow begin -5lt xlt -2\ xne -4 end Rightarrow xin (-5;-4)cup(-4;-2) ) Решаем уравнение: (x^2-4=2-x) (x^2+x-6=0) ((x+3)(x-2)=0) ( left[ begin x_1=-3\ x_2=2 — text end right. ) Ответ: -3 В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять! Например: Решим уравнение (log_(x+1)=log_(x+3)) Основания (2ne 4), и нельзя сразу написать (x+1=x+3). Нужно привести к одному основанию, преобразовав левую часть: (log_2(x+1)=log_(x+1)^2=log_4(x+1)^2) Тогда исходное уравнение примет вид: (log_4(x+1)^2=log_4(x+3)) И теперь: ((x+1)^2=x+3) (x^2+x-2=0) ((x+2)(x-1)=0) ( left[ begin x_1=-2\ x_2=1 end right. ) Что касается ОДЗ, то её нужно искать для исходного уравнения: ( begin x+1gt 0\ x+3gt 0 end Rightarrow begin xgt -1\ xgt -3 end Rightarrow xgt -1 ) Корень (x_1=-2lt -1) — не подходит. Ответ: 1 Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни. Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны. Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований. п.4. Примеры Пример 1. Решите уравнения: a) ( log_2(x+1)-log_2(x-1)=1 ) ОДЗ: ( begin x+1gt 0\ x-1gt 0 end Rightarrow begin xgt -1\ xgt 1 end Rightarrow xgt 1 ) (log_2left((x+1)(x-1)right)=log_22) (x^2-1=2Rightarrow x^2 =3) ( left[ begin x_1=-sqrtlt 2 — text\ x_2=sqrt end right. ) Ответ: (sqrt) б) ( 2log_5(x-1)=log_5(1,5x+1) ) ОДЗ: ( begin x-1gt 0\ 1,5x+1gt 0 end Rightarrow begin xgt 1\ xgt-frac23 end Rightarrow xgt 1 ) Преобразуем: (2log_5(x-1)=log_5(x-1)^2) Получаем: (log_5(x-1)^2=log_5(1,5x+1)) ((x-1)^2=1,5x+1) (x^2-2x+1-1,5x-1=0Rightarrow x^2-3,5x=0Rightarrow x(x-3,5)=0) ( left[ begin x_1=0lt 1 — text\ x_2=3,5 end right. ) Ответ: 3,5 в) ( log_3(3-x)+log_3(4-x)=1+2log_3 2 ) ОДЗ: ( begin 3-xgt 0\ 4-xgt 0 end Rightarrow begin xlt 3\ xlt 4 end Rightarrow xlt 3 ) Преобразуем: (1+2log_3 2=log_3 3+log_3 2^2=log_3(3cdot 4)=log_3 12) Получаем: (log_3left((3-x)(4-x)right)=log_3 12) ((3-x)(4-x)=12Rightarrow 12-7x+x^2=12Rightarrow x(x-7)=0) ( left[ begin x_1=0\ x_2=7gt 3 — text end right. ) Ответ: 0 г) ( log_2^2x+log_2 x^2+1=0 ) ОДЗ: (xgt 0) (log_2x^2=2log_2x) Получаем: (log_2^2x+2log_2x+1=0) Замена: (t=log_2 x) (t^2+2t+1=0Rightarrow(t+1)^2=0Rightarrow t=-1) Возвращаемся к исходной переменной: (log_2x=-1) (x=2^=frac12) Ответ: (frac12) д) ( x^=10 ) ОДЗ: (xgt 0) Замена: (t=lg ⁡x). Тогда (x=10^t) Подставляем: ((10^t)^t=10Rightarrow 10^=10^1Rightarrow t^2=1Rightarrow t=pm 1) Возвращаемся к исходной переменной: ( left[ begin lg x=-1\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,1\ x_2=10 end right. ) Оба корня подходят. Ответ: e) ( sqrtcdot log_5(x+3)=0 ) ОДЗ: ( begin xgeq 0\ x+3gt 0 end Rightarrow begin xgeq 0\ xgt -3 end Rightarrow xgeq 0 ) ( left[ begin sqrt=0\ log_5(x+3)=0 end right. Rightarrow left[ begin x=0\ x+3=5^0=1 end right. Rightarrow left[ begin x_1=0\ x_2=-2lt 0 — text end right. ) Ответ: 0 ж) ( log_2+2log_x=log_(x+1) ) ОДЗ: ( begin xgt 0\ x+1gt 0\ 5x-2gt 0\ 5x-2ne 1 end Rightarrow begin xgt 0\ xgt -1\ xgtfrac25\ xnefrac35 end Rightarrow begin xgtfrac25\ xnefrac35 end ) Преобразуем: (log_2+2log_x=log_(2x^2)) Подставляем: (log_(2x^2)=log_(x+1)) ( 2x^2=x+1Rightarrow 2x^2-x-1=0Rightarrow (2x+1)(x-1)=0 Rightarrow left[ begin x_1=-frac12 — text\ x_2=1 end right. ) Ответ: 1 Пример 2*. Решите уравнения: a) ( log_4log_2log_3(2x-1)=frac12 ) ОДЗ: ( begin 2x-1gt 0\ log_3(2x-1)gt 0\ log_2log_3(2x-1)gt 0 end Rightarrow begin xgtfrac12\ 2x-1gt 3^0\ log_3(2x-1)gt 2^0 end Rightarrow begin xgtfrac12\ xgt 1\ 2x-1gt 3^1 end Rightarrow ) ( Rightarrow begin xgtfrac12\ xgt 1\ xgt 2 end Rightarrow xgt 2 ) Решаем: (log_2log_3(2x-1)=4^=2) (log_3(2x-1)=2^2=4) (2x-1=3^4=81) (2x=82) (x=41) Ответ: 41 б) ( log_2(9-2^x)=25^<log_5sqrt> ) ОДЗ: ( begin 9-2xgt 0\ 3-xgt 0 end Rightarrow begin 2^xlt 9\ xlt 3 end Rightarrow begin xltlog_2 9\ xlt 3 end Rightarrow xlt 3 ) Преобразуем: (25^<log_5sqrt>=25^<log_(sqrt)^2>=25^<log_(3-x)>=3-x) Подставляем: (log_2(9-2^x)=3-x) (9-2^x=2^) (9-2^x-frac=0) Замена: (t=2^xgt 0) ( 9-t-frac8t=0Rightarrow frac=0Rightarrow begin t^2-9t+8gt 0\ tne 0 end Rightarrow begin (t-1)(t-8)=0\ tne 0 end Rightarrow left[ begin t_1=1\ t_2=8 end right. ) Возвращаемся к исходной переменной: ( left[ begin 2^x=1\ 2^x=8 end right. Rightarrow left[ begin 2^x=2^0\ 2^x=2^3 end right. Rightarrow left[ begin x_1=0\ x_2=3 end right. ) По ОДЗ (xlt 3), второй корень не подходит. Ответ: 0 в) ( lgsqrt+lgsqrt+1=lg 30 ) ОДЗ: ( begin x-5gt 0\ 2x-3gt 0 end Rightarrow begin xgt 5\ xgtfrac32 end Rightarrow xgt 5 ) Преобразуем: (lg 30-1=lg 30-lg 10=lgfrac=lg 3) Подставляем: (lgsqrt+lgsqrt=lg 3) (frac12lg(x-5)+frac12lg(2x-3)=lg 3 |cdot 2) (lg(x-4)+lg(2x-3)=2lg 3) (lgleft((x-5)(2x-3)right)=lg 3^2) ((x-5)(2x-3)=9Rightarrow 2x^2-13x+15-9=0 Rightarrow 2x^2-13x+6=0) ( (2x-1)(x-6)=0Rightarrow left[ begin x_1=frac12lt 5 — text\ x_2=6 end right. ) Ответ: 6 г) ( frac+frac+frac=0 ) ОДЗ: ( begin xgt 0\ lg xne 0\ lg 10xne 0\ lg 100xne 0 end Rightarrow begin xgt 0\ xne 1\ 10xne 1\ 100xne 1 end Rightarrow begin xgt 0\ xneleft<frac;frac;1right> end ) Преобразуем: (lg 10x=lg 10+lg x=1+lg 10) (lg 100x=lg 100+lg x=2+lg x) Подставляем: (frac+frac+frac=0) Замена: (t=lg x) begin frac1t+frac+frac=0Rightarrow frac1t+frac=-fracRightarrow frac=-fracRightarrow (1+2t)(2+t)=(1+t)\ 2_5t+2t^2=-3t-3t^2Rightarrow 5t^2+8t+2=0\ D=8^2-4cdot 5cdot 2=24, t=frac<-8pm 2sqrt>=frac<-4pm sqrt> end Возвращаемся к исходной переменной: $$ left[ begin lg x=frac<-4- sqrt>\ lg x=frac<-4+ sqrt> end right. Rightarrow left[ begin x=10frac<-4- sqrt>\ x=10frac<-4+ sqrt> end right. $$ Оба корня подходят. Ответ: (left<10frac<-4pmsqrt>right>) e) ( x^<frac>=10^ ) ОДЗ: (xgt 0) Замена: (t=lg x.) Тогда (x=10^t) Подставляем: begin (10^t)^<frac>=10^\ frac=t+1Rightarrow t(t+7)=4(t+1)Rightarrow t^2+7t-4t-4=0\ t^2+3t-4=0Rightarrow (t+4)(t-1)=0Rightarrow left[ begin t_1=-4\ t_2=1 end right. end Возвращаемся к исходной переменной: $$ left[ begin lg x=-4\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,0001\ x_2=10 end right. $$ Оба корня подходят. Ответ: (left) ж) ( 4^=(2x^2+2x+5)^ ) ОДЗ: ( begin 1-xgt 0\ 2x^2+2x+5gt 0 end Rightarrow begin xlt 1\ Dlt 0, xinmathbb end Rightarrow xlt 1 ) По условию: begin log_3(1-x)=log_4left((2x^2+2x+5)^right)\ log_3(1-x)=log_32cdotlog_4(2x^2+2x+5) end Перейдем к другому основанию: $$ frac=fraccdotfrac |cdot lg 3 $$ (frac=frac=frac=frac12) begin lg(1-x)=frac12cdotlg(2x^2+2x+5) |cdot 2\ 2lg(1-x)=lg(2x^2+2x+5)\ lg(1-x)^2=lg(2x^2+2x+5)\ (1-x)^2=2x^2+2x+5\ 1-2x+x^2=2x^2+2x+5\ x^2+4x+4=0\ (x+2)^2=0\ x=-2 end Ответ: -2 Пример 3. Решите систему уравнений: a) ( begin lg x+lg y=lg 2\ x^2+y^2=5 end ) ОДЗ: ( begin xgt 0\ ygt 0 end ) Из первого уравнения: (lg(xy)=lg 2Rightarrow xy=2) Получаем: ( begin xy=2\ x^2+y^2=5 end Rightarrow begin y=frac2x\ x^2+left(frac2xright)^2-5=0 end ) Решаем биквадратное уравнение: begin x^2+frac-5=0Rightarrowfrac=0Rightarrow begin x^4-5x^2+4=0\ xne 0 end \ (x^2-4)(x^2-1)=0Rightarrow left[ begin x^2=4\ x^2=1 end right. Rightarrow left[ begin x=pm 2\ x=pm 1 end right. end Согласно ОДЗ, оставляем только положительные корни. Получаем две пары решений: ( left[ begin begin x=1\ y=frac2x=2 end \ begin x=2\ y=frac22=1 end end right. ) Ответ: (left) б) ( begin x^=27\ x^=frac13 end ) ОДЗ: (xgt 0, xne 1) Логарифмируем: ( begin y+1=log_x27=log_x3^3=3log_x3\ 2y-5=log_xfrac13=log_x3^=-log_x3 end ) Замена: (z=log_x3) begin begin y+1=3z\ 2y-5=-z |cdot 3 end Rightarrow begin y+1=3z\ 6y-15=-3z end Rightarrow begin 7y-14=0\ z=5-2y end Rightarrow begin y=2\ z=1 end end Возвращаемся к исходной переменной: $$ begin y=2\ log_x3=1 end Rightarrow begin x^1=3\ y=2 end Rightarrow begin x=3\ y=2 end $$ Ответ: (3;2) в*) ( begin 3(log_y x-log_x y)=8\ xy=16 end ) ОДЗ: ( begin xgt 0, xne 1\ ygt 0, yne 1 end ) Сделаем замену (t=log_x y). Тогда (log_y x=frac=frac1t) Подставим в первое уравнение и решим его: begin 3left(frac1t-tright)=8Rightarrowfrac=frac83Rightarrow begin 3(1-t^2)=8t\ tne 0 end\ 3t^2+8t-3=0Rightarrow (3t-1)(t+3)=0Rightarrow left[ begin t_1=frac13\ t_2=-3 end right. end Прологарифмируем второе уравнение по (x): $$ log_x(xy)=log_x16Rightarrow 1+log_x y=log_x16Rightarrow 1+t=log_x 16 $$ Получаем: begin left[ begin begin t=frac13\ log_x16=1+t=frac43 end \ begin t=-3\ log_x16=1+t=-2 end end right. Rightarrow left[ begin begin t=frac13\ x^=16 end \ begin t=-3\ x^=16 end end right. Rightarrow left[ begin begin t=frac13\ x=(2^4)^=2^3=8 end \ begin t=-3\ x=(16)^=frac14 end end right. end Возвращаемся к исходной переменной: begin left[ begin begin x=8\ log_x y=frac13 end \ begin x=frac14\ log_x y=-3 end end right. Rightarrow left[ begin begin x=8\ y=8^=2 end \ begin x=frac14\ y=left(frac14right)^=64 end end right. end Ответ: (left) г*) ( begin (x+y)cdot 3^=frac\ 3log_5(x+y)=x-y end ) ОДЗ: (x+ygt 0) Прологарифмируем первое уравнение по 3: begin log_3left((x+y)cdot 3^right)=log_3frac\ log_3(x+y)+(y-x)=log_3frac\ log_3(x+y)-log_3frac=x-y end Получаем:(x-y=3log_5(x+y)=log_3(x+y)-log_3frac) Решим последнее уравнение относительно (t=x+y) begin 3log_5 t=log_3 t-log_3frac\ 3cdotfrac-log_3t=-log_3frac\ log_3tcdotleft(frac-1right)=-log_3frac\ log_3t=-frac<log_3frac><frac-1>=-frac=log_35\ t=5 end Тогда: (x-y=3log_5t=3log_55=3) Получаем систему линейных уравнений: begin begin x+y=5\ x-y=3 end Rightarrow begin 2x=5+3\ 2y=5-3 end Rightarrow begin x=4\ y=1 end end Требование ОДЗ (x+y=4+1gt 0) выполняется. Ответ: (4;1) Логарифмическое уравнение: решение на примерах Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения. Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании. Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить. Как решать уравнения с логарифмами: 2 способа с примерами Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Вспоминаем определение логарифма и получаем следующее:Таким образом мы получаем простое уравнение, которое сможем легко решить. При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку! Давайте посмотрим, как это работает на примере: Воспользуемся определением логарифма и получим: Теперь перед нами простейшее уравнение, решить которое не составит труда: Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения. Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ. Поэтому мы покажем еще один способ решения логарифмических уравнений. Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так: Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере. Решим еще раз то же самое уравнение, но теперь этим способом:В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2. Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае:Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма: Воспользуемся этим свойством в нашем случае, получим:Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение: Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений. Разберем другой пример:Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим:Вспоминаем свойства степеней: Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения. Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы: Решим данное квадратное уравнение, найдем дискриминант: Сделаем проверку, подставим х1 = 1 в исходное уравнение:Верно, следовательно, х1 = 1 является корнем уравнения. Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень. Пример решения логарифмического уравнения с разными основаниями Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например, Правильно, нужно привести логарифмы в правой и левой части к одному основанию! Итак, разберем наш пример:Преобразуем правую часть нашего уравнения: Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Применяем эти знания и получаем:Но пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма: Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Верно, следовательно, х = 4 является корнем уравнения. Пример решения логарифмического уравнения с переменными основаниями Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы:Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму: 1. Аргумент логарифма должен быть больше ноля, следовательно: 2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно: Сведем все требования в систему: Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Перепишем нашу систему:Следовательно, наша система примет следующий вид:Теперь решаем наше уравнение:Справа у нас квадрат суммы:Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения. Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение: Т.к. 3 2 =9, то последнее выражение верно. Как сделать проверку Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля. Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения: После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ! Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.
  10. п.4. Примеры
  11. Логарифмическое уравнение: решение на примерах
  12. Как решать уравнения с логарифмами: 2 способа с примерами
  13. Пример решения логарифмического уравнения с разными основаниями
  14. Пример решения логарифмического уравнения с переменными основаниями
  15. Как сделать проверку
  16. 📺 Видео

Видео:Решение логарифмических уравнений. Вебинар | МатематикаСкачать

Решение логарифмических уравнений. Вебинар | Математика

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Видео:84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать

84 людей этого не знают! Секретный способ решения Логарифмических Уравнений

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Видео:✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис Трушин

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Видео:Учимся решать сложные логарифмические уравненияСкачать

Учимся решать сложные логарифмические уравнения

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению (f(x)=g(x)) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида (log_a f(x)=log_a g(x))

Неравенства ( begin f(x)gt 0\ g(x)gt 0 end ) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для (x) в явном виде;
2) решить уравнение (f(x)=g(x));
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения (f(x)) и (g(x)) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение (f(x)=g(x));
2) провести подстановку: полученные корни подставить в выражения для (f(x)) и (g(x)), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение (lg(2x+3)+lg(x+4)=lg(1-2x))
Найдем ОДЗ в явном виде:
( begin 2x+3gt 0\ x+4gt 0\ 1-2xgt 0 end Rightarrow begin xgt-frac32\ xgt-4\ xltfrac12 end Rightarrow -frac32lt xltfrac12Rightarrow xinleft(-frac32;frac12right) )
Решаем уравнение:
(lgleft((2x+3)(x+4)right)=lg(1-2x))
((2x+3)(x+4)=1-2x)
(2x^2+11x+12-1+2x=0)
(2x^2+13x+11=0)
((2x+11)(x+1)=0)
( left[ begin x_1=-5,5\ x_2=-1 end right. )
Корень (x_1=-5,5notin left(-frac32;frac12right),) т.е. не подходит.
Корень (x_2=-1in left(-frac32;frac12right)) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида (log_ f(x)=log_ g(x))

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение (log_(x^2-4)=log_(2-x))
Найдем ОДЗ в явном виде:
( begin x^2-4gt 0\ 2-xgt 0\ x+5gt 0\ x+5ne 1 end Rightarrow begin xlt -2cup xgt 2\ xlt 2\ xgt -5\ xne -4 end Rightarrow begin -5lt xlt -2\ xne -4 end Rightarrow xin (-5;-4)cup(-4;-2) )
Решаем уравнение:
(x^2-4=2-x)
(x^2+x-6=0)
((x+3)(x-2)=0)
( left[ begin x_1=-3\ x_2=2 — text end right. )
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение (log_(x+1)=log_(x+3))
Основания (2ne 4), и нельзя сразу написать (x+1=x+3).
Нужно привести к одному основанию, преобразовав левую часть:
(log_2(x+1)=log_(x+1)^2=log_4(x+1)^2)
Тогда исходное уравнение примет вид: (log_4(x+1)^2=log_4(x+3))
И теперь: ((x+1)^2=x+3)
(x^2+x-2=0)
((x+2)(x-1)=0)
( left[ begin x_1=-2\ x_2=1 end right. )
Что касается ОДЗ, то её нужно искать для исходного уравнения:
( begin x+1gt 0\ x+3gt 0 end Rightarrow begin xgt -1\ xgt -3 end Rightarrow xgt -1 )
Корень (x_1=-2lt -1) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) ( log_2(x+1)-log_2(x-1)=1 )
ОДЗ: ( begin x+1gt 0\ x-1gt 0 end Rightarrow begin xgt -1\ xgt 1 end Rightarrow xgt 1 )
(log_2left((x+1)(x-1)right)=log_22)
(x^2-1=2Rightarrow x^2 =3)
( left[ begin x_1=-sqrtlt 2 — text\ x_2=sqrt end right. )
Ответ: (sqrt)

б) ( 2log_5(x-1)=log_5(1,5x+1) )
ОДЗ: ( begin x-1gt 0\ 1,5x+1gt 0 end Rightarrow begin xgt 1\ xgt-frac23 end Rightarrow xgt 1 )
Преобразуем: (2log_5(x-1)=log_5(x-1)^2)
Получаем: (log_5(x-1)^2=log_5(1,5x+1))
((x-1)^2=1,5x+1)
(x^2-2x+1-1,5x-1=0Rightarrow x^2-3,5x=0Rightarrow x(x-3,5)=0)
( left[ begin x_1=0lt 1 — text\ x_2=3,5 end right. )
Ответ: 3,5

в) ( log_3(3-x)+log_3(4-x)=1+2log_3 2 )
ОДЗ: ( begin 3-xgt 0\ 4-xgt 0 end Rightarrow begin xlt 3\ xlt 4 end Rightarrow xlt 3 )
Преобразуем: (1+2log_3 2=log_3 3+log_3 2^2=log_3(3cdot 4)=log_3 12)
Получаем: (log_3left((3-x)(4-x)right)=log_3 12)
((3-x)(4-x)=12Rightarrow 12-7x+x^2=12Rightarrow x(x-7)=0)
( left[ begin x_1=0\ x_2=7gt 3 — text end right. )
Ответ: 0

г) ( log_2^2x+log_2 x^2+1=0 )
ОДЗ: (xgt 0)
(log_2x^2=2log_2x)
Получаем: (log_2^2x+2log_2x+1=0)
Замена: (t=log_2 x)
(t^2+2t+1=0Rightarrow(t+1)^2=0Rightarrow t=-1)
Возвращаемся к исходной переменной: (log_2x=-1)
(x=2^=frac12)
Ответ: (frac12)

д) ( x^=10 )
ОДЗ: (xgt 0)
Замена: (t=lg ⁡x). Тогда (x=10^t)
Подставляем:
((10^t)^t=10Rightarrow 10^=10^1Rightarrow t^2=1Rightarrow t=pm 1)
Возвращаемся к исходной переменной:
( left[ begin lg x=-1\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,1\ x_2=10 end right. )
Оба корня подходят.
Ответ:

e) ( sqrtcdot log_5(x+3)=0 )
ОДЗ: ( begin xgeq 0\ x+3gt 0 end Rightarrow begin xgeq 0\ xgt -3 end Rightarrow xgeq 0 )
( left[ begin sqrt=0\ log_5(x+3)=0 end right. Rightarrow left[ begin x=0\ x+3=5^0=1 end right. Rightarrow left[ begin x_1=0\ x_2=-2lt 0 — text end right. )
Ответ: 0

ж) ( log_2+2log_x=log_(x+1) )
ОДЗ: ( begin xgt 0\ x+1gt 0\ 5x-2gt 0\ 5x-2ne 1 end Rightarrow begin xgt 0\ xgt -1\ xgtfrac25\ xnefrac35 end Rightarrow begin xgtfrac25\ xnefrac35 end )
Преобразуем: (log_2+2log_x=log_(2x^2))
Подставляем: (log_(2x^2)=log_(x+1))
( 2x^2=x+1Rightarrow 2x^2-x-1=0Rightarrow (2x+1)(x-1)=0 Rightarrow left[ begin x_1=-frac12 — text\ x_2=1 end right. )
Ответ: 1

Пример 2*. Решите уравнения:
a) ( log_4log_2log_3(2x-1)=frac12 )
ОДЗ: ( begin 2x-1gt 0\ log_3(2x-1)gt 0\ log_2log_3(2x-1)gt 0 end Rightarrow begin xgtfrac12\ 2x-1gt 3^0\ log_3(2x-1)gt 2^0 end Rightarrow begin xgtfrac12\ xgt 1\ 2x-1gt 3^1 end Rightarrow )
( Rightarrow begin xgtfrac12\ xgt 1\ xgt 2 end Rightarrow xgt 2 )
Решаем:
(log_2log_3(2x-1)=4^=2)
(log_3(2x-1)=2^2=4)
(2x-1=3^4=81)
(2x=82)
(x=41)
Ответ: 41

б) ( log_2(9-2^x)=25^<log_5sqrt> )
ОДЗ: ( begin 9-2xgt 0\ 3-xgt 0 end Rightarrow begin 2^xlt 9\ xlt 3 end Rightarrow begin xltlog_2 9\ xlt 3 end Rightarrow xlt 3 )
Преобразуем: (25^<log_5sqrt>=25^<log_(sqrt)^2>=25^<log_(3-x)>=3-x)
Подставляем: (log_2(9-2^x)=3-x)
(9-2^x=2^)
(9-2^x-frac=0)
Замена: (t=2^xgt 0)
( 9-t-frac8t=0Rightarrow frac=0Rightarrow begin t^2-9t+8gt 0\ tne 0 end Rightarrow begin (t-1)(t-8)=0\ tne 0 end Rightarrow left[ begin t_1=1\ t_2=8 end right. )
Возвращаемся к исходной переменной:
( left[ begin 2^x=1\ 2^x=8 end right. Rightarrow left[ begin 2^x=2^0\ 2^x=2^3 end right. Rightarrow left[ begin x_1=0\ x_2=3 end right. )
По ОДЗ (xlt 3), второй корень не подходит.
Ответ: 0

в) ( lgsqrt+lgsqrt+1=lg 30 )
ОДЗ: ( begin x-5gt 0\ 2x-3gt 0 end Rightarrow begin xgt 5\ xgtfrac32 end Rightarrow xgt 5 )
Преобразуем: (lg 30-1=lg 30-lg 10=lgfrac=lg 3)
Подставляем: (lgsqrt+lgsqrt=lg 3)
(frac12lg(x-5)+frac12lg(2x-3)=lg 3 |cdot 2)
(lg(x-4)+lg(2x-3)=2lg 3)
(lgleft((x-5)(2x-3)right)=lg 3^2)
((x-5)(2x-3)=9Rightarrow 2x^2-13x+15-9=0 Rightarrow 2x^2-13x+6=0)
( (2x-1)(x-6)=0Rightarrow left[ begin x_1=frac12lt 5 — text\ x_2=6 end right. )
Ответ: 6

г) ( frac+frac+frac=0 )
ОДЗ: ( begin xgt 0\ lg xne 0\ lg 10xne 0\ lg 100xne 0 end Rightarrow begin xgt 0\ xne 1\ 10xne 1\ 100xne 1 end Rightarrow begin xgt 0\ xneleft<frac;frac;1right> end )
Преобразуем: (lg 10x=lg 10+lg x=1+lg 10)
(lg 100x=lg 100+lg x=2+lg x)
Подставляем: (frac+frac+frac=0)
Замена: (t=lg x)
begin frac1t+frac+frac=0Rightarrow frac1t+frac=-fracRightarrow frac=-fracRightarrow (1+2t)(2+t)=(1+t)\ 2_5t+2t^2=-3t-3t^2Rightarrow 5t^2+8t+2=0\ D=8^2-4cdot 5cdot 2=24, t=frac<-8pm 2sqrt>=frac<-4pm sqrt> end Возвращаемся к исходной переменной:
$$ left[ begin lg x=frac<-4- sqrt>\ lg x=frac<-4+ sqrt> end right. Rightarrow left[ begin x=10frac<-4- sqrt>\ x=10frac<-4+ sqrt> end right. $$ Оба корня подходят.
Ответ: (left<10frac<-4pmsqrt>right>)

e) ( x^<frac>=10^ )
ОДЗ: (xgt 0)
Замена: (t=lg x.) Тогда (x=10^t)
Подставляем: begin (10^t)^<frac>=10^\ frac=t+1Rightarrow t(t+7)=4(t+1)Rightarrow t^2+7t-4t-4=0\ t^2+3t-4=0Rightarrow (t+4)(t-1)=0Rightarrow left[ begin t_1=-4\ t_2=1 end right. end Возвращаемся к исходной переменной:
$$ left[ begin lg x=-4\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,0001\ x_2=10 end right. $$ Оба корня подходят.
Ответ: (left)

ж) ( 4^=(2x^2+2x+5)^ )
ОДЗ: ( begin 1-xgt 0\ 2x^2+2x+5gt 0 end Rightarrow begin xlt 1\ Dlt 0, xinmathbb end Rightarrow xlt 1 )
По условию: begin log_3(1-x)=log_4left((2x^2+2x+5)^right)\ log_3(1-x)=log_32cdotlog_4(2x^2+2x+5) end Перейдем к другому основанию: $$ frac=fraccdotfrac |cdot lg 3 $$ (frac=frac=frac=frac12) begin lg(1-x)=frac12cdotlg(2x^2+2x+5) |cdot 2\ 2lg(1-x)=lg(2x^2+2x+5)\ lg(1-x)^2=lg(2x^2+2x+5)\ (1-x)^2=2x^2+2x+5\ 1-2x+x^2=2x^2+2x+5\ x^2+4x+4=0\ (x+2)^2=0\ x=-2 end Ответ: -2

Пример 3. Решите систему уравнений:
a) ( begin lg x+lg y=lg 2\ x^2+y^2=5 end )
ОДЗ: ( begin xgt 0\ ygt 0 end )
Из первого уравнения: (lg(xy)=lg 2Rightarrow xy=2)
Получаем: ( begin xy=2\ x^2+y^2=5 end Rightarrow begin y=frac2x\ x^2+left(frac2xright)^2-5=0 end )
Решаем биквадратное уравнение: begin x^2+frac-5=0Rightarrowfrac=0Rightarrow begin x^4-5x^2+4=0\ xne 0 end \ (x^2-4)(x^2-1)=0Rightarrow left[ begin x^2=4\ x^2=1 end right. Rightarrow left[ begin x=pm 2\ x=pm 1 end right. end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: ( left[ begin begin x=1\ y=frac2x=2 end \ begin x=2\ y=frac22=1 end end right. )
Ответ: (left)

б) ( begin x^=27\ x^=frac13 end )
ОДЗ: (xgt 0, xne 1)
Логарифмируем: ( begin y+1=log_x27=log_x3^3=3log_x3\ 2y-5=log_xfrac13=log_x3^=-log_x3 end )
Замена: (z=log_x3) begin begin y+1=3z\ 2y-5=-z |cdot 3 end Rightarrow begin y+1=3z\ 6y-15=-3z end Rightarrow begin 7y-14=0\ z=5-2y end Rightarrow begin y=2\ z=1 end end Возвращаемся к исходной переменной: $$ begin y=2\ log_x3=1 end Rightarrow begin x^1=3\ y=2 end Rightarrow begin x=3\ y=2 end $$
Ответ: (3;2)

в*) ( begin 3(log_y x-log_x y)=8\ xy=16 end )
ОДЗ: ( begin xgt 0, xne 1\ ygt 0, yne 1 end )
Сделаем замену (t=log_x y). Тогда (log_y x=frac=frac1t)
Подставим в первое уравнение и решим его: begin 3left(frac1t-tright)=8Rightarrowfrac=frac83Rightarrow begin 3(1-t^2)=8t\ tne 0 end\ 3t^2+8t-3=0Rightarrow (3t-1)(t+3)=0Rightarrow left[ begin t_1=frac13\ t_2=-3 end right. end Прологарифмируем второе уравнение по (x): $$ log_x(xy)=log_x16Rightarrow 1+log_x y=log_x16Rightarrow 1+t=log_x 16 $$ Получаем: begin left[ begin begin t=frac13\ log_x16=1+t=frac43 end \ begin t=-3\ log_x16=1+t=-2 end end right. Rightarrow left[ begin begin t=frac13\ x^=16 end \ begin t=-3\ x^=16 end end right. Rightarrow left[ begin begin t=frac13\ x=(2^4)^=2^3=8 end \ begin t=-3\ x=(16)^=frac14 end end right. end Возвращаемся к исходной переменной: begin left[ begin begin x=8\ log_x y=frac13 end \ begin x=frac14\ log_x y=-3 end end right. Rightarrow left[ begin begin x=8\ y=8^=2 end \ begin x=frac14\ y=left(frac14right)^=64 end end right. end
Ответ: (left)

г*) ( begin (x+y)cdot 3^=frac\ 3log_5(x+y)=x-y end )
ОДЗ: (x+ygt 0)
Прологарифмируем первое уравнение по 3: begin log_3left((x+y)cdot 3^right)=log_3frac\ log_3(x+y)+(y-x)=log_3frac\ log_3(x+y)-log_3frac=x-y end Получаем:(x-y=3log_5(x+y)=log_3(x+y)-log_3frac)
Решим последнее уравнение относительно (t=x+y) begin 3log_5 t=log_3 t-log_3frac\ 3cdotfrac-log_3t=-log_3frac\ log_3tcdotleft(frac-1right)=-log_3frac\ log_3t=-frac<log_3frac><frac-1>=-frac=log_35\ t=5 end Тогда: (x-y=3log_5t=3log_55=3)
Получаем систему линейных уравнений: begin begin x+y=5\ x-y=3 end Rightarrow begin 2x=5+3\ 2y=5-3 end Rightarrow begin x=4\ y=1 end end Требование ОДЗ (x+y=4+1gt 0) выполняется.
Ответ: (4;1)

Логарифмическое уравнение: решение на примерах

Методы решения сложных логарифмических уравнений

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Видео:Логарифмические уравнения. 11 класс.Скачать

Логарифмические уравнения. 11 класс.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Методы решения сложных логарифмических уравненийВспоминаем определение логарифма и получаем следующее:Методы решения сложных логарифмических уравненийТаким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Методы решения сложных логарифмических уравнений

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Методы решения сложных логарифмических уравненийТак как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Методы решения сложных логарифмических уравнений

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом:Методы решения сложных логарифмических уравненийВ левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:Методы решения сложных логарифмических уравненийТо есть в нашем случае:Методы решения сложных логарифмических уравненийВозьмем правую часть нашего уравнения и начнем ее преобразовывать:Методы решения сложных логарифмических уравненийТеперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Методы решения сложных логарифмических уравнений

Воспользуемся этим свойством в нашем случае, получим:Методы решения сложных логарифмических уравненийМы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Методы решения сложных логарифмических уравненийТеперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример:Методы решения сложных логарифмических уравненийИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:Методы решения сложных логарифмических уравненийПосле преобразования правой части наше уравнение принимает следующий вид:Методы решения сложных логарифмических уравненийТеперь можно зачеркнуть логарифмы и тогда получим:Методы решения сложных логарифмических уравненийВспоминаем свойства степеней:

Теперь делаем проверку:Методы решения сложных логарифмических уравненийто последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Методы решения сложных логарифмических уравненийПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Методы решения сложных логарифмических уравненийТеперь преобразуем правую часть уравнения:Методы решения сложных логарифмических уравненийВыполнив преобразования правой и левой частей уравнения, мы получили:Методы решения сложных логарифмических уравненийТеперь мы можем зачеркнуть логарифмы:

Методы решения сложных логарифмических уравненийРешим данное квадратное уравнение, найдем дискриминант:

Методы решения сложных логарифмических уравненийСделаем проверку, подставим х1 = 1 в исходное уравнение:Методы решения сложных логарифмических уравненийМетоды решения сложных логарифмических уравненийВерно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Методы решения сложных логарифмических уравненийТак как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Видео:Умножаем логарифмы В УМЕ🧠Скачать

Умножаем логарифмы В УМЕ🧠

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Методы решения сложных логарифмических уравненийПравильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Методы решения сложных логарифмических уравненийПреобразуем правую часть нашего уравнения:

Методы решения сложных логарифмических уравнений

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Методы решения сложных логарифмических уравненийПрименяем эти знания и получаем:Методы решения сложных логарифмических уравненийНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:Методы решения сложных логарифмических уравнений

Тогда получим:Методы решения сложных логарифмических уравненийВот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Методы решения сложных логарифмических уравненийДелаем проверку:Методы решения сложных логарифмических уравненийЕсли мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Методы решения сложных логарифмических уравненийВерно, следовательно, х = 4 является корнем уравнения.

Видео:Методы решения логарифмических уравненийСкачать

Методы решения логарифмических уравнений

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Методы решения сложных логарифмических уравненийПреобразуем правую часть уравнения:Методы решения сложных логарифмических уравненийТеперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Методы решения сложных логарифмических уравненийТеперь мы можем зачеркнуть логарифмы:Методы решения сложных логарифмических уравненийНо данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

Методы решения сложных логарифмических уравнений

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Методы решения сложных логарифмических уравнений

Сведем все требования в систему:Методы решения сложных логарифмических уравнений

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Методы решения сложных логарифмических уравненийПерепишем нашу систему:Методы решения сложных логарифмических уравненийСледовательно, наша система примет следующий вид:Методы решения сложных логарифмических уравненийТеперь решаем наше уравнение:Методы решения сложных логарифмических уравненийСправа у нас квадрат суммы:Методы решения сложных логарифмических уравненийДанный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Методы решения сложных логарифмических уравнений

Т.к. 3 2 =9, то последнее выражение верно.

Видео:Логарифмические уравнения - Как решать методом потенцированияСкачать

Логарифмические уравнения - Как решать методом потенцирования

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:Методы решения сложных логарифмических уравнений

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!

Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.

📺 Видео

Проще простого! Как решить Логарифмическое Уравнение?Скачать

Проще простого! Как решить Логарифмическое Уравнение?

Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?Скачать

ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?

Логарифмическое уравнение / Как решить?Скачать

Логарифмическое уравнение / Как решить?

ЕГЭ 2022: Логарифмическое уравнение с разным основанием | Задание №1Скачать

ЕГЭ 2022: Логарифмическое уравнение с разным основанием | Задание №1

Сложные логарифмические уравнения (bezbotvy)Скачать

Сложные логарифмические уравнения (bezbotvy)

Методы решения логарифмических уравненийСкачать

Методы решения логарифмических уравнений

Решение логарифмических уравнений методом группировкиСкачать

Решение логарифмических уравнений методом группировки
Поделиться или сохранить к себе: