, зав. кафедрой математики ДВГГУ
Системы иррациональных, логарифмических и показательных уравнений
Традиционно в контрольные измерительные материалы для проведения единого государственного экзамена по математике включаются задачи позволяющие проверить умения выпускников решать различные системы уравнений. Как правило, это системы из двух уравнений с двумя переменными. Уравнения, входящие в систему могут быть как алгебраическими, в том числе иррациональными, так и трансцендентными. В рамках этой статьи рассмотрим основные методы решения систем с двумя переменными иррациональных, логарифмических и показательных уравнений.
Прежде чем непосредственно переходить к методам решения систем уравнений напомним основные определения и свойства различных функций, которые могут входить в уравнения системы.
Напомним, что два уравнения с двумя неизвестными образуют систему уравнений, если ставится задача о нахождении таких значений переменных, которые являются решениями каждого из уравнений.
Решением системы двух уравнений с двумя неизвестными называется упорядоченная пара чисел, при подстановке которых в систему вместо соответствующих переменных, получаются верные числовые равенства.
Решить систему уравнений – означает найти все ее решения.
Процесс решения системы уравнений, как и процесс решения уравнения, состоит в последовательном переходе с помощью некоторых преобразований от данной системы к более простой. Обычно пользуются преобразованиями, которые приводят к равносильной системе, в этом случае не требуется проверка найденных решений. Если же были использованы неравносильные преобразования, то обязательна проверка найденных решений.
Иррациональными называют уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.
Следует отметить, что
1. Все корни четной степени, входящие в уравнения, являются арифметическими. Другими словами, если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то и значение корня положительно.
2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом корень отрицателен, если подкоренной выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если подкоренное выражение положительно.
Функции y = 

При решении систем иррациональных уравнений используются два основных метода: 1) возведение обеих частей уравнений в одну и туже степень; 2) введение новых переменных.
При решении систем иррациональных уравнений первым методом следует помнить, что при возведении обеих частей уравнения, содержащего корни четной степени, в одну и туже степень, получается уравнение, которое является следствием первоначального, в связи с этим, в процессе решения могут появиться посторонние корни. При решении иррациональных уравнений часто используется формула 
Рассмотрим примеры решения систем иррациональных уравнений различными методами.
Пример 1. Решить систему уравнений
Решение. Чтобы избавиться от иррациональности введем новые переменные. Пусть 
тогда первоначальная система примет вид: 



Нетрудно убедиться в том, что найденное решение последней системы является решением исходной системы.
Пример 2. Решить систему уравнений
Решение. 1. Из второго уравнения системы имеем: 













Подставим, полученное выражение во второе уравнение первоначальной системы: 



В силу (4) корень 
Найдем значение у при 

Нетрудно убедиться в том, что пара (0; 4) является решением первоначальной системы уравнений.
Пример 3. Решить систему уравнений:
Решение. 1. Заметим, что правая часть первого уравнения должна быть неотрицательной, т. е. 
2. Возведем обе части первого уравнения в квадрат, получим уравнение: 









Для успешного решения показательных и логарифмических систем уравнений, вспомним определение и свойства логарифма.
Логарифмом числа b по основанию а, называется показатель степени, в которую нужно возвести число а, чтобы получить число b.
Основные свойства логарифмов:
1) 

2) 

3) 

4) 

5) 

Перечислим основные свойства показательной и логарифмической функций:
1) Область определения функции 



2) Множество значений функции 

3) Промежутки монотонности: если 

Замечание. В соответствии со вторым свойством, при решении логарифмических уравнений необходимо либо выяснять область допустимых значений уравнения, либо после решения делать проверку.
Показательным называется трансцендентное уравнение, в котором неизвестное входит в показатель степени некоторых величин. При решении показательных уравнений используются два основных метода:
1) переход от уравнения 

2) введение новых переменных.
Иногда приходится применять искусственные приемы.
Первый метод решения показательных уравнений основан на следующей теореме:
Если 
Перечислим основные приемы сведения показательного уравнения к уравнению вида (1).
1. Приведение обеих частей уравнения к одному основанию.
2. Логарифмирование обеих частей уравнения (если они строго положительные) по одинаковому основанию.
Замечание. Логарифмировать можно, вообще говоря, по любому основанию, но обычно логарифмируют по одному из оснований степеней, входящих в уравнение.
3. Разложение левой части уравнения на множители и сведение уравнения к совокупности нескольких уравнений вида (1).
Логарифмическое уравнение – это трансцендентное уравнение, в котором неизвестное входит в аргумент логарифма.
При решении логарифмических уравнений используются два основных метода:
1) переход от уравнения 

2) введение новых переменных.
Замечание. Так как область определения логарифмической функции только множество положительных действительных чисел, при решении логарифмических уравнений необходимо либо находить область допустимых значений уравнения (ОДЗ), либо после нахождения решений уравнения делать проверку.
Решение простейшего логарифмического уравнения вида

основано на следующем важном свойстве логарифмов:
логарифмы двух положительных чисел по одному и тому же положительному отличному от единицы основанию равны тогда и только тогда, когда равны эти числа.
Для уравнения (1) из этого свойства получаем: 
Для уравнения вида 
получаем равносильное уравнение 
Пример 4. Найдите значение выражения 


Решение. 1. Исходя из области определения логарифмической функции получаем требования 
2. Так как уравнения системы содержат логарифмы по двум разным основаниям, перейдем к одному основанию 3: 








3. Найдем значение выражения
Пример 5. Найдите наибольшую сумму 


Решение. Имеем систему показательных уравнений. Особенностью этой системы является то, что неизвестные находятся как в показателе степени, так и в ее основании. Первым шагом при решении таких систем обычно стараются оставить неизвестные только в показателе степени.
В нашем случае это нетрудно сделать, выразив 



Воспользуемся свойствами степени: 









Из уравнения 





Найдем суммы вида 
Рассмотрим несколько примеров «комбинированных» систем уравнений в которые входят уравнения различных видов: иррациональные, логарифмические, показательные.
Пример 6. Решить систему уравнений
Решение. 1. На основании свойств логарифмической функции, имеем 
2. Преобразуем систему, воспользовавшись свойствами степени и логарифма:
3. Второе логарифмическое уравнение системы содержит одинаковые логарифмы, рациональным методом решения таких уравнений является метод замены переменной. Пусть 






При 








При 








Ответ: 

Пример 7. Решить систему 
Решение. 1. Отметим, что система смешанного типа, состоит из логарифмического и иррационального уравнений. Учитывая область определения логарифмической функции, имеем: 

Область допустимых значений иррационального уравнения определять не будем, чтобы не тратить время на решение системы неравенств, которая при этом получиться. Но тогда обязательно, когда найдем значения переменных, необходимо сделать проверку.
2. Воспользовавшись свойствами логарифма преобразуем первое уравнение системы:

Таким образом, из второго уравнения системы мы выразили одну переменную через другую.
3. Подставим во второе уравнение системы вместо переменной 

Найдем корни квадратного уравнения: 
Учитывая, что 


4. Учитывая (1) делаем вывод, что 
Пример 8. Решить систему
Решение. 1. Рассмотрим второе уравнение системы. Чтобы избавиться от иррациональности, уединим квадратный корень и возведем обе части уравнения в квадрат:
Рассмотрим это уравнение как квадратное, относительно переменной 



2. Обе части первого уравнения прологарифмируем по основанию 3, тем самым мы избавимся в уравнении от показательных функций по разным основаниям: 
3. Учитывая найденные выражения для переменной 
А) 

А) Подставим выражение для 




Б) Подставим выражение для 



Ответ: 
Задания для самостоятельного решения
1. Решить систему
2. Решить систему
3. Найти 
4. Решить систему
5. Решить систему
6. Решить систему
- Презентация на тему: «Решение систем показательных, логарифмических и линейных уравнений»
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Конспект урока алгебры «Решение систем показательных и логарифмических уравнений»
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 🔥 Видео
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

Презентация на тему: «Решение систем показательных, логарифмических и линейных уравнений»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Описание презентации по отдельным слайдам:
Решение систем показательных, логарифмических и линейных уравнений
Цель: научиться решать системы показательных, логарифмических и линейных уравнений
Задачи:
Повторить правила решения показательных, логарифмических уравнений.
Повторить материал школьного курса математики, при решении систем линейных уравнений.
Научиться решать системы уравнений
Основные свойства логарифмов
1
Основные свойства показательной функции
При любых действительных значениях Х справедливы равенства
2
Способы решения линейных уравнений
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться, такую группу уравнений мы называем системой.
Объединяем уравнения в систему с помощью фигурной скобки
1. Метод подстановки
Нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной.
Затем точно так же выражаем и подставляем другую переменную и т.д., пока не получим уравнение с одной переменной. После его решения и нахождения одной из переменных — последовательно возвращаемся к ранее выраженным, подставляя найденные значения.
1) Из первого уравнения выражаем Х
2) Подставляем вместо Х во второе уравнение, находим У
3) Возвращаемся к первому уравнению и находим Х
Ответ: х=0, у=5
2. Метод алгебраического сложения
Основан на следующем: если сложить левые части уравнений, то полученное выражение будет равно сложенным правым частям этих же уравнений, т.е.:
Умножим первое уравнение на -2
Сложим первое и второе уравнение
Подставим У=5 в любое исходное уравнение
Ответ: х=0, у=5
2. Графический метод
Построим графики каждого уравнения, в одной системе координат. Решениями системы уравнений будут точки пересечения графиков
Для начала выразим У в каждом уравнении:
ПРИМЕРЫ
3
1) Решить систему
2) Решить систему
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 929 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 686 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 313 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Показательные уравнения. 11 класс.Скачать

Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 587 332 материала в базе
Материал подходит для УМК
«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.
§ 14. Системы показательных уравнений и неравенств
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 12.12.2021
- 26
- 0
- 12.12.2021
- 205
- 1
- 12.12.2021
- 743
- 11
- 12.12.2021
- 90
- 0
- 12.12.2021
- 332
- 10
- 12.12.2021
- 271
- 1
- 12.12.2021
- 278
- 5
- 12.12.2021
- 47
- 1
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 12.12.2021 66
- PPTX 267 кбайт
- 8 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Брызгалова Наталья Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 2 года и 3 месяца
- Подписчики: 0
- Всего просмотров: 30897
- Всего материалов: 25
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Минпросвещения подключит студотряды к обновлению школьной инфраструктуры
Время чтения: 1 минута
В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
В Забайкалье в 2022 году обеспечат интернетом 83 школы
Время чтения: 1 минута
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Только на 23 февраля!
Получите новую
специальность
по низкой цене
Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки
Видео:Как решать системы показательных уравнений. Урок№ 27Скачать

Конспект урока алгебры «Решение систем показательных и логарифмических уравнений»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Выполнила: Блохина Валентина Ивановна
ГБОУСОШ №2 п.г.т.Безенчук
муниципального района Безенчукский
Предмет алгебра Класс 11
Тема урока Решение систем показательных и логарифмических уравнений
— обобщить знания и умения учащихся по применению методов решения систем показательных и логарифмических уравнений
-актуализировать личностный смысл учащихся к изучению темы
-создать содержательные и организационные условия для развития умений решать системы уравнений и находить различные способы их решений
-создать условия для творческой самореализации личности
-развивать умение наблюдать, сравнивать, обобщать, анализировать математические ситуации
-воспитывать такие качества личности, как познавательную активность, самостоятельность, упорство в достижении цели
-заинтересовать учащихся в решении нестандартных систем уравнений для подготовки к ЕГЭ
-побуждать учащихся к самоконтролю, самоанализу своей деятельности
-учить учащихся выдвигать гипотезы и находить правильные решения
-развивать логическо- математическую речь
-создать творческий микроклимат на уроке
Сообщение темы урока; постановка цели урока; сообщение этапов урока
Актуализация знаний учащихся
Проверка домашнего задания
Выявить пробелы в знаниях с целью построения последующей работы учителя
Рассмотреть нестандартные способы решения систем уравнений
Закрепить умение решать системы уравнений нестандартными способами
Инструктаж по домашнему заданию
Вводная беседа учителя, в которой он отмечает, что сложные показательные и логарифмические системы уравнений часто вызывают у учащихся старших классов значительные трудности. Поэтому нам сегодня на уроке предстоит повторить методы решения систем уравнений и, изучив «Изюминки», научиться решать системы нестандартных уравнений. Каждый из вас должен перед собой поставить цель, которой он должен достигнуть на уроке.
2.Устная работа (актуализация знаний учащихся)
Учащимся предлагается решить систему линейных уравнений и ответить на следующие вопросы:
-Каким способом решали систему уравнений?
-Какие еще способы решения данной системы уравнений можно использовать?
— Что называется решением системы уравнений?
Затем учащимся предлагается решить системы логарифмических и показательных уравнений по вариантам
и ответить на вопросы:
-Сравнить эти системы уравнений с предыдущей. Что общего? В чем отличие
Анализ: выявление существенных признаков.
Умение строить речевое высказывание.
Работа по алгоритму, подведение под понятие, рефлексия.
Перенос с одной области на другую.
Модифицированные действия (на одно действие больше)
3.Проверка домашнего задания
Решить системы уравнений из домашнего задания (4 человека). Каждый последующий ученик решает другим способом (сложения, подстановки, введения новой переменной, графическим)
Остальные учащиеся в это время работают с тестами:
Ответы: вариант 1: 4;2.
Проверяем решение домашнего задания и тесты.
Анализ способов, рефлексия.
Подведение под понятие, сравнение с эталоном, саморефлексия, работа в парах (взаимопроверка)
К доске вызываются ученики, которые подготовили дома «Изюминки»- решение уравнений и систем уравнений нестандартными способами.
1)
2)
3)
Работа в парах. Остальным предлагается обсудить в парах отличие заданной системы уравнений от других:
Ответить на вопросы:
-Чем эта система отличается от других?
-Каким способом ее можно решить?
Анализ системы показывает, что не удается выразить удобно одну переменную через другую. Остальные способы тоже не дают возможности решить систему. Но сравнение показателей степеней множителей, входящих в левую часть обеих уравнений наводит на мысль о возможности перемножения и деления правых и левых частей уравнений для получения степени с одинаковым основанием.
Решаем эту систему уравнений на доске.
Воспитание волевой саморегуляции Выдвижение гипотез.
Информационный поиск, исследовательская деятельность, расширение предметной области
Извлечение необходимой информации
Составление плана последовательности действий
Работа в группах.
Тренажеры . Закрепляем решение систем уравнений нестандартными способами.
Проверяем решение уравнений и систем уравнений «Изюминок » на доске.
Отвечаем на вопросы:
-В чем необычность уравнения или системы уравнений?
Каким способом решали уравнение или систему уравнений?
Сравнение с эталоном, умение вести диалог
Коррекция путем взаимопроверки или внешняя коррекция (консультация учителя)
Что нового узнали на уроке?
-В чем особенность урока?
-В каких случаях следует применять нетрадиционные способы решения систем уравнений?
-Что понравилось на уроке?
Выставляются отметки за работу на уроке
Собрать тетради с тренажерами на проверку.
Рефлексия, самооценка, прогнозирование
7. Домашнее задание №194 на стр.335. Для решения этих систем уравнений повторите решение тригонометрических уравнений.
Подготовить изюминки к следующему уроку.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 929 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 686 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 313 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Видео:10 класс. Алгебра. Системы показательных уравнений.Скачать

Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 587 332 материала в базе
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 03.10.2016
- 434
- 0
- 03.10.2016
- 259
- 0
- 03.10.2016
- 272
- 1
- 03.10.2016
- 1155
- 1
- 03.10.2016
- 998
- 3
- 03.10.2016
- 559
- 0
- 03.10.2016
- 325
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 03.10.2016 1268
- DOCX 98.5 кбайт
- 16 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Блохина Валентина Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 4 месяца
- Подписчики: 2
- Всего просмотров: 4385
- Всего материалов: 8
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Логарифмические уравнения и их системы. Практическая часть. 11 класс.Скачать

Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
В школах Хабаровского края введут уроки спортивной борьбы
Время чтения: 1 минута
Университет им. Герцена и РАО создадут портрет современного школьника
Время чтения: 2 минуты
Школьник из Сочи выиграл международный турнир по шахматам в Сербии
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Только на 23 февраля!
Получите новую
специальность
по низкой цене
Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки
🔥 Видео
Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

9 класс, 11 урок, Методы решения систем уравненийСкачать

Логарифмические уравнения. 11 класс.Скачать

11 класс, 17 урок, Логарифмические уравненияСкачать

84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать

11 класс, 12 урок, Показательные уравненияСкачать

Системы показательных уравнений и неравенств. Практика. Видеоуроки 13. Алгебра 10 классСкачать

Решение логарифмических уравнений. Вебинар | МатематикаСкачать

11 класс, 18 урок, Логарифмические неравенстваСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

СИСТЕМЫ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ системы показательных неравенствСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Это просто! Как решать Показательные Неравенства?Скачать

Показательные неравенства и их системы. Вебинар | МатематикаСкачать

























































