Данный онлайн-сервис позволяет найти с помощью метода наименьших квадратов уравнения линейной, квадратичной, гиперболической, степенной, логарифмической, показательной, экспоненциальной регрессии и др., коэффициенты и индексы корреляции и детерминации. Показываются диаграмма рассеяние и график уравнения регрессии. Также калькулятор делает оценку значимости параметров уравнения регрессии с помощью F-критерия Фишера, t-критерия Стьюдента и критерия Дарбина-Уотсона.
Можно задать уровень значимости и указать, до какого знака после запятой округлять расчётные величины.
Примечание: дробные числа записывайте через точку, а не запятую.
Степенная регрессия
Квадратичная регрессия
Кубическая регрессия
Показательная регрессия
Логарифмическая регрессия
Экспоненциальная регрессия
Округлять до
-го
знака после запятой.
Видео:Метод наименьших квадратов. Линейная аппроксимацияСкачать
Метод наименьших квадратов регрессия
Метод наименьших квадратов (МНК) заключается в том, что сумма квадратов отклонений значений y от полученного уравнения регрессии — минимальное. Уравнение линейной регрессии имеет вид
y=ax+b
a, b – коэффициенты линейного уравнения регрессии;
x – независимая переменная;
y – зависимая переменная.
Нахождения коэффициентов уравнения линейной регрессии через метод наименьших квадратов:
частные производные функции приравниваем к нулю
отсюда получаем систему линейных уравнений
Формулы определения коэффициентов уравнения линейной регрессии:
Также запишем уравнение регрессии для квадратной нелинейной функции:
Система линейных уравнений регрессии полинома n-ого порядка:
Формула коэффициента детерминации R 2 :
Формула средней ошибки аппроксимации для уравнения линейной регрессии (оценка качества модели):
Чем меньше ε, тем лучше. Рекомендованный показатель ε
Формула среднеквадратической погрешности:
Для примера, проведём расчет для получения линейного уравнения регрессии аппроксимации функции, заданной в табличном виде:
x | y |
3 | 4 |
4 | 7 |
6 | 11 |
7 | 16 |
9 | 18 |
11 | 22 |
13 | 24 |
15 | 27 |
16 | 30 |
19 | 33 |
Решение
Расчеты значений суммы, произведения x и у приведены в таблицы.
Расчет коэффициентов линейной регрессии:
при этом средняя ошибка аппроксимации равна:
ε=11,168%
Получаем уравнение линейной регрессии с помощью метода наименьших квадратов:
y=1,7871x+0,79
График функции линейной зависимости y=1,7871x+0,79 и табличные значения, в виде точек
Коэффициент корреляции равен 0,988
Коэффициента детерминации равен 0,976
Видео:Построение уравнения линейной регрессии методом наименьших квадратов.Скачать
Методом наименьших квадратов найти уравнение линейной регрессии
При различных значениях а и b можно построить бесконечное число зависимостей вида yx=a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.
Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов.
Обозначим: Yi — значение, вычисленное по уравнению Yi=a+bxi. yi — измеренное значение, εi=yi-Yi — разность между измеренными и вычисленными по уравнению значениям, εi=yi-a-bxi.
В методе наименьших квадратов требуется, чтобы εi, разность между измеренными yi и вычисленными по уравнению значениям Yi, была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:
Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:
Если разделить обе части нормальных уравнений на n, то получим:
Учитывая, что (3)
Получим , отсюда , подставляя значение a в первое уравнение, получим:
При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:
Полученная прямая является оценкой для теоретической линии регрессии. Имеем:
Итак, является уравнением линейной регрессии.
Регрессия может быть прямой (b>0) и обратной (b 2 =4+0+1+4+16=25
xiyi=-2•0.5+0•1+1•1.5+2•2+4•3=16.5
yi=0.5+1+1.5+2+3=8
и нормальная система (2) имеет вид
Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x.
Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).
xi | 180 | 172 | 173 | 169 | 175 | 170 | 179 | 170 | 167 | 174 |
yi | 186 | 180 | 176 | 171 | 182 | 166 | 182 | 172 | 169 | 177 |
Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.
Решение. 1. Проведем упорядочивание данных по значениям xi и yi. Получаем новую таблицу:
xi | 167 | 169 | 170 | 170 | 172 | 173 | 174 | 175 | 179 | 180 |
yi | 169 | 171 | 166 | 172 | 180 | 176 | 177 | 182 | 182 | 186 |
Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.
xi | yi | xi 2 | xiyi |
167 | 169 | 27889 | 28223 |
169 | 171 | 28561 | 28899 |
170 | 166 | 28900 | 28220 |
170 | 172 | 28900 | 29240 |
172 | 180 | 29584 | 30960 |
173 | 176 | 29929 | 30448 |
174 | 177 | 30276 | 30798 |
175 | 182 | 30625 | 31850 |
179 | 182 | 32041 | 32578 |
180 | 186 | 32400 | 33480 |
∑xi=1729 | ∑yi=1761 | ∑xi 2 299105 | ∑xiyi=304696 |
x=172.9 | y=176.1 | xi 2 =29910.5 | xy=30469.6 |
Согласно формуле (4), вычисляем коэффициента регрессии
Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x.
Нанесем на координатной плоскости точки (xi; yi) и отметим прямую регрессии.
На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений yi от Yi, где yi наблюдаемые, а Yi определяемые регрессией значения, составим таблицу:
xi | yi | Yi | Yi-yi |
167 | 169 | 168.055 | -0.945 |
169 | 171 | 170.778 | -0.222 |
170 | 166 | 172.140 | 6.140 |
170 | 172 | 172.140 | 0.140 |
172 | 180 | 174.863 | -5.137 |
173 | 176 | 176.225 | 0.225 |
174 | 177 | 177.587 | 0.587 |
175 | 182 | 178.949 | -3.051 |
179 | 182 | 184.395 | 2.395 |
180 | 186 | 185.757 | -0.243 |
Значения Yi вычислены согласно уравнению регрессии.
Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.
🔥 Видео
Метод наименьших квадратов, урок 1/2. Линейная функцияСкачать
Метод наименьших квадратовСкачать
Метод наименьших квадратов. Регрессионный анализ.Скачать
Метод наименьших квадратов (МНК)Скачать
Что такое линейная регрессия? Душкин объяснитСкачать
Как работает метод наименьших квадратов? Душкин объяснитСкачать
Суть метода наименьших квадратов с примерами. Основы эконометрики в RСкачать
Парная регрессия: линейная зависимостьСкачать
Метод наименьших квадратов. Случай линейной регрессииСкачать
Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnlineСкачать
Метод наименьших квадратов. Квадратичная аппроксимацияСкачать
Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать
Линейная регрессия. Что спросят на собеседовании? ч.1Скачать
Линейная регрессия | Нормальное уравнение | Метод наименьших квадратовСкачать
Математика #1 | Корреляция и регрессияСкачать
Метод наименьших квадратов. Парная регрессия расчет без Excel @economc #МНК #регрессия #корреляцияСкачать
ЦОС Python #1: Метод наименьших квадратовСкачать
Линейная регрессияСкачать