Методика решение задач с помощью уравнений начальная школа

Решение задач путем составления уравнения
статья по математике на тему

Решение задач путем составления уравнения

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Скачать:

ВложениеРазмер
reshenie_zadach_putem_sostavleniya_uravneniya.docx22.96 КБ

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Предварительный просмотр:

Решение задач путём составления уравнения

Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления.

Данный аспект является главным в развитии личности ученика, так как мышление влияет на воспитанность человека. Достаточная подготовленность к мыслительной деятельности снимает психологические нагрузки в учении, предупреждает неуспеваемость, сохраняет здоровье.

Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения. К такой системе относится методика обучения по УДЕ.

Одна из основных целей технологии УДЕ – создание действенных и эффективных условий для развития познавательных способностей детей, их интеллекта и творческого начала, расширение математического кругозора.

В основу технологии УДЕ положен принцип: чтобы обучать ускоренно и при высоком уровне знаний, необходимо рассматривать целостные группы взаимосвязанных понятий. В триадах задач реализуется фактор дополнительности подсознательных механизмов познания.

Триада означает выполнение учеником на одном уроке:

  1. готового упражнения;
  2. обращение этого задания и самостоятельное обобщение решенной задачи;
  3. составление новой задачи и её решение.

Этот приём даёт хороший эффект в обучении, так как он побуждает учащихся осмысливать и усваивать материал на основе более высокой степени обучения.

Вопрос преемственности между начальным и средним звеньями обучения очень актуален.

В среднем звене школы ученики, например, на уроках математики обучаются решению задач путём составления уравнения, и учителя сталкиваются с недопониманием учащимися этой темы. А решать задачи путём составления уравнения можно уже в начальной школе с использованием технологии УДЕ.

Сделаем срез методики обучения решению задач путём составления уравнения.

а) Выражение с окошечками: 3 + 1 = 4 + 1 = 4 Методика решение задач с помощью уравнений начальная школа Методика решение задач с помощью уравнений начальная школа

3 + 1 = 3 + = 4 Методика решение задач с помощью уравнений начальная школа

б) Знакомство с понятиями «слагаемое» и «сумма»:

3 и 1 – слагаемые. Числа, которые складываются, называются слагаемыми.

4 – сумма. Число, которое получается в результате сложения, называется суммой.

в) четверка примеров:

3 + 1 = 4 4 – 1 = 3

1 + 3 = 4 4 – 3 = 1

  1. Триада задач (на нахождение суммы и неизвестного слагаемого)

на нахождение суммы

на нахождение неизвестного слагаемого

на нахождение неизвестного слагаемого

У Ромы 4 тетради в клетку, 3 тетради в линейку. Сколько всего тетрадей у Вити?

У Ромы 4 тетради в клетку, остальные в линейку. Всего 7 тетрадей. Сколько у Ромы тетрадей в клетку?

У Ромы 3 тетради в линейку, остальные в клетку. Всего у него 7 тетрадей. Сколько У Ромы тетрадей в клетку.

4, 3, Методика решение задач с помощью уравнений начальная школа

4, , 7 Методика решение задач с помощью уравнений начальная школа Методика решение задач с помощью уравнений начальная школа

  1. Решение задач путём составления уравнения

Числа 5 и 3 – слагаемые.

Результат сложения – число 8.

Пусть неизвестно второе слагаемое. Обозначим неизвестное слагаемое х (икс). Мы получили равенство – уравнение.

Требуется найти число х. используем правило: чтобы найти неизвестное слагаемое, надо из суммы (8) вычесть известное слагаемое (5)

Это задача на нахождение неизвестного слагаемого.

Далее предлагается ребятам составить третью задачу из триады, но с другим неизвестным компонентом (3). Решив триаду задач, ученики рассмотрели взаимосвязь взаимно-обратных задач и научились составлять уравнения для решения задач. На таком же принципе строится знакомство с решением задач на нахождение неизвестного уменьшаемого и неизвестного вычитаемого.

Начиная с таких простейших задач, закрепляя умение выделять неизвестное в задаче и обозначать его алгебраически, умение составлять уравнение, и, решив это уравнение, найти неизвестное, можно уже без затруднения в четвертом классе (1 – 4) начальной школы решать с детьми более сложные задачи путём составления уравнения.

Две швеи шили одинаковые платья. Первая сшила 5 платьев, а вторая – 3 платья. Они израсходовали 32 м ткани. Сколько метров ткани израсходовали каждая швея в отдельности?

Видео:Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Решение простых арифметических задач с помощью составления уравнений

По традиционной программе с помощью составления уравнений решаются с 4 класса простые арифметические задачи, теоретической основой выбора арифметического действия в которых является связь между компонентами и результатом арифметического действия.

Для решения задачи с помощью составления уравнения обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное (уравнение), записывают соответствующие выражения и составляют равенство. Полученное уравнение решают. При этом решение полученного уравнения не связывается с содержанием задачи. Решение любой задачи можно выполнить путем составления уравнения, руководствуясь указанным планом. В этом заключается универсальность способа решения задач с помощью составления уравнений, что определяет его преимущества. Кроме того, решение задач способом составления уравнений способствует овладению понятием уравнения. Поэтому уже в начальных классах в определенной системе ведется обучение решению задач путем составления уравнений.

В методике обучения решению задач с помощью составления уравнений предусматриваются следующие этапы: сначала ведется подготовительная работа к решению задач с помощью уравнений, затем вводится решение простых задач с помощью уравнений.

На этапе подготовки к решению задач с помощью составления уравнений у учащихся, прежде всего, должно быть сформировано представление об уравнении как равенстве, содержащем неизвестное число, и умение решать уравнения на основе знания связи между компонентами и результатами арифметических действий.

Необходимым требованием для формирования умения решать задачи с помощью уравнений является умение составлять выражения по их условиям. Поэтому, начиная с I класса, необходимо вводить запись решения задач в форме выражения. Учащиеся должны упражняться в объяснении смысла выражений, составленных по условию задачи (например, объясняют, что обозначает сумма чисел 30 и 3, разность чисел 30 и 3, частное чисел 30 и 3, если 30 коп. — цена книги, а 3 коп. — цена тетради); сами составлять выражения по заданному условию задачи (составьте выражение, которое обозначает стоимость двух книг, стоимость 5 тетрадей, стоимость двух книг и 5 тетрадей вместе), а также составлять задачи по их решению, записанному в виде выражения.

Запись решения задачи с помощью составления уравнения должна осуществляться так же, как с помощью составления выражения.

Однако в практике работы традиционной начальной школы устанавливается механическая связь между словом из текста задачи и соответствующим математическим символом: «несколько» — «х», «взяли» — «-», «осталось» — «=». Такой подход к обучению решению задач с помощью составления уравнения можно назвать формальным. Не выделяется, а, следовательно, детьми актуально не осознается система операций, составляющих процесс решения задачи с помощью составления уравнения, не формируется общее умение решать задачи алгебраическим способом. В связи с чем в старших классах школы придётся просто переучивать детей, что значительно труднее, чем научить заново.

Такой подход имел место в традиционной школе и ранее, в связи с чем в начале 80-х годов прошлого столетия решение простых текстовых задач алгебраическим способом было постепенно вытеснено из первого класса в четвертый, решение же составных задач алгебраическим способом полностью ушло из традиционной начальной школы.

Как отмечает Дж. Брунер, ребёнка в этом возрасте можно научить интегральному исчислению, нужно подобрать только слово. Это слово в учебниках математики для начальных классов 1972 года и методических пособиях к ним не было подобрано, многие учителя, не справившись самостоятельно с обучением младших школьников решению задач алгебраическим способом, начали обращаться в МП РФ с просьбой об исключении данного материала из начального курса математики, что и было сделано [47].

Н.П. Фаустова [46] считает, что памятка при решении простой (а также составной) арифметической задачи с помощью составления уравнения может быть следующей:

  • 1. Подумаю, что обозначу за х.
  • 2. Подумаю, что буду уравнивать.
  • 3. Составляю два выражения, выражающих значения одной и той же величины.
  • 4. Записываю уравнение.
  • 5. Решаю уравнение.
  • 6. Проверяю.

Рассмотрим на примере конкретной задачи.

Задача. После того, как с аэродрома улетело 4 вертолёта, там осталось 2 вертолёта. Сколько вертолётов было на аэродроме?

Х (в.) — столько было на аэродроме,

Х-4 (в.) — столько осталось на аэродроме,

2 (в.) — столько осталось на аэродроме.

Составляем уравнение: Х-4=2

Ответ: 6 вертолётов.

При использовании представленной памятки и соответствующей организации деятельности детей, как показала практика работы школы, дети овладевают полноценным умением решать арифметические задачи с помощью составления уравнения.

Однако, как показывает изучение деятельности традиционной школы, в начальных классах в процессе решения текстовых задач алгебраическим способом детьми актуально не осознается система операций, составляющих процесс решения задачи, что существенным образом отражается на качестве формируемого умения.

Об этом и пойдет речь в следующем параграфе.

Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

Методика решение задач с помощью уравнений начальная школа

Методика решение задач с помощью уравнений начальная школа Методика решение задач с помощью уравнений начальная школа

webkonspect.com — сайт, с элементами социальной сети, создан в помощь студентам в их непростой учебной жизни.

Здесь вы сможете создать свой конспект который поможет вам в учёбе.

Чем может быть полезен webkonspect.com:

  • простота создания и редактирования конспекта (200 вопросов в 3 клика).
  • просмотр конспекта без выхода в интернет.
  • удобный текстовый редактор позволит Вам форматировать текст, рисовать таблицы, вставлять математические формулы и фотографии.
  • конструирование одного конспекта совместно с другом, одногрупником.
  • webkonspect.com — надёжное место для хранения небольших файлов.

🎬 Видео

Решение задач с помощью уравнений | Алгебра 7 класс #19 | ИнфоурокСкачать

Решение задач с помощью уравнений | Алгебра 7 класс #19 | Инфоурок

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?Скачать

Как научить ребенка решать задачи по математике. Почему не получается решать задачи по математике?

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Видеоурок «Решение задач с помощью уравнений»Скачать

Видеоурок «Решение задач с помощью уравнений»

Решение задач с помощью уравнений. Алгебра, 7 классСкачать

Решение задач с помощью уравнений. Алгебра, 7 класс

Урок 14 Решение задач с помощью уравнений (5 класс)Скачать

Урок 14 Решение задач с помощью уравнений (5 класс)

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Математика 2 класс" УЧИМСЯ РЕШАТЬ ЗАДАЧИ С ПОМОЩЬЮ УРАВНЕНИЙ"Скачать

Математика 2 класс" УЧИМСЯ РЕШАТЬ ЗАДАЧИ С ПОМОЩЬЮ УРАВНЕНИЙ"

Методы решения логических задач | Онлайн-школа Альфа. 5-6 классСкачать

Методы решения логических задач | Онлайн-школа Альфа. 5-6 класс

Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика ШаталоваСкачать

Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика Шаталова

Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение

Краткая запись задачи. Как сделать краткую запись к задаче?Скачать

Краткая запись задачи. Как сделать краткую запись к задаче?
Поделиться или сохранить к себе: